Detecting Changes in 3D Structure of a Scene from Multi-view Images Captured by a Vehicle-mounted Camera

Ken Sakurada, Takayuki Okatani, Koichiro Deguchi (Tohoku Univ., Japan)

Background: Difficulty with dense depth estimation (i.e., multi-view stereo) from images captured by a ground vehicle

Motivation

- Visualize the damages and the recovery/reconstruction processes of the tsunami affected-areas
- Since mid-April 2011
- 2 or 3 months apart
- 25 million images
- Every 2m • 20 TB (as of Dec. 2012)

Panoramic images of tsunami-damaged area

Dense 3D reconstruction from ground vehicle images

- A lot of missing parts tend to be missing
 - The differentiation of two reconstructions does not give good results

The results of applying PMVS2 to the images captured from a running vehicle

Estimation of relative camera poses

- Perform SfM independently for each of the two sequences
- Roughly align the two reconstructions based on GPS data
 - Reestablish the correspondences of feature points by incorporating a distance constraint
- Perform bundle adjustment over the two sequences

Final result

Detection of temporal changes of a scene

Goal: Estimate the large-scale structural changes of a city.

- Estimate the scene depths not deterministically but probabilistically
- Estimate the probability of the structural changes independently at each pixel by integrating the estimated depth densities

Estimating the probability of scene changes

Inputs

3 $p(s'_d | \delta_d = 1, c = 1) = p(s'_d | \delta'_d = 0)$

4 $p(s'_d | \delta_d = 0, c = 1) = p(s'_d | \delta'_d = 0 \text{ or } 1)$

- The similarity of the local image patches among the multi-view images $\{s'_1,...,s'_n\}$
- (Camera poses that are already estimated)
- The probability that the scene changes its structure at the pixel x_1 of I_1 .

Experimental results

The proposed method outperforms the MVS-based methods

Disparity space 128 blocks (n = 128)

- No prior on the probability of scene changes p(c=1) = 0.5**MVS-based methods**
- The structures of a scene is reconstructed based on MVS Then, they are differentiated to detect scene changes

Conclusion

- The proposed method estimates the probability of the structural changes independently at each pixel by integrating the densities of estimated depths.
- Experimental results show that the proposed method outperforms the MVS-based methods.

Change detection dataset

- The dataset used in this study are available from our web site http://www.vision.is.tohoku.ac.jp/us/download/
 - Images of two different city streets
 - Data of each street consists of two image sequences captured at different times, the estimated camera poses, and several handlabeled ground-truths