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* We present a new approach to convert continuous MRFs to discrete MRFs, which enables non-uniform discretization of the variable space TOHOKU
e |tyields extended MF/BP algorithms, which can achieve better trade-off between estimation accuracy and computational complexity
e We also propose a “dynamic discretization method” that adaptively discretizes the variable space depending on the necessity

Introduction Our approach Dynamic discretization of the variable space
MRF mOdEIS° Conventional way of converting continuous MRFs to discrete ones e If a prior knowledge is available about where is important in the
0(x) = — exp( E(x)) E(X) = Z £i(x;) + Z fiix, x7) 1. Discretize the variable space variable space, the application of our method is straightforward
(i, ))eE 2. Redefine the energy in the discrete domain e We propose a “dynamic discretization method” that can be used
Two types of inference used with MRFs: - . — The original continuous energy (if any) is discarded when no such knowledge is available
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X 2. Derive MF/BP message exchange rules in the variational framework
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Because of the limitation with continuous MRFs, the estimation is often ;i h;(x;) 3. Divide this block into subblocks by
performed in the discrete domain even for continuous problems; the pi(x;) = Z a; h; (x;) adjusting the values of the weights or the
marginal densities are approximated by discrete densities » messages
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computational cost; the variable space is uniformly discretized
Our idea: Discretize the variable space in a non-uniform manner such that Results: New MF/BP algorithms § . 1. Effects of non-uniform discretization (Gaussian grid MRF) 5
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How to cope with the intractability of computing marginal densities: | . ;
| . . . | | Advantages: | ] . | | el B x * |
1. Consider P such that its marginal densities will be easily calculated:

1. Enable non-uniform discretization
- Better trade-off between accuracy and computational complexity

11 pij(xi, x;)
Plx) = npi(xi) G P - iji(xi)zi_l

2. Find P minimizing the KL distance between P and Q.

DI[P||Q] — min & F[P] = (E)» — S[P] — min
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; 2. Could be useful for dealing with the variable spaces
N

that are non-Euclidean and are difficult to discretize

uniformly
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