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Abstract

The mean field (MF) methods are an energy optimization
method for Markov random fields (MRFs). These methods,
which have their root in solid state physics, estimate the
marginal density of each site of an MRF graph by iterative
computation, similarly to loopy belief propagation (LBP).
It appears that, being shadowed by LBP, the MF methods
have not been seriously considered in the computer vision
community. This study investigates whether these methods
are useful for practical problems, particularly MPM (Maxi-
mum Posterior Marginal) inference, in computer vision. To
be specific, we apply the naive MF equations and the TAP
(Thouless-Anderson-Palmer) equations to interactive seg-
mentation and stereo matching. In this paper, firstly, we
show implementation of these methods for computer vision
problems. Next, we discuss advantages of the MF methods
to LBP. Finally, we present experimental results that the MF
methods are well comparable to LBP in terms of accuracy
and global convergence; furthermore, the 3rd-order TAP
equation often outperforms LBP in terms of accuracy.

1. Introduction

Markov Random Fields have been applied to solve many
problems in the fields of computer vision and image pro-
cessing. The applications include image restoration [20, 4],
super-resolution [24], stereo matching [19, 23], and opti-
cal flow estimation [26]. These problems share the same
formalization, in which one optimizes the energy function
consisting of the data term of each site and the smoothness
term of neighboring sites:

E(x) =
∑

i

fi(xi) +
∑

(i, j)∈E
fi j (xi , x j), (1)

wherex = [x1, . . .]⊤, andxi is the variable of sitei.
Estimation ofx is formulated as a statistical inference

problem under the assumption that the Boltzmann distri-
bution specified byE(x) gives the probability density of
x. There are two methods for solving this inference prob-
lem. One is the MAP (Maximum A Posteriori) inference,
which seeks the maximum likelihood estimate; the other is

the MPM (Maximum Posterior Marginal) inference, which
calculates the marginal density of each variablexi (and uses,
say, its maximum likelihood value, as the estimate ofxi).

In this paper, we study only the MPM inference. Al-
though it is in general considered to be more difficult to
perform than the MAP inference, it is necessary or desir-
able in some applications to estimate the marginal density
of eachxi , not xi itself; moreover, even when we are only
interested in the estimation ofx, the MPM inference often
outperforms the MAP inference in terms of estimation ac-
curacy [8].

For the MAP inference, there exist several powerful
methods, such as graph cuts [23] and Tree-reweighted BP
[10], which have been widely used in the computer vision
community. On the other hand, for the MPM inference,
there is in practice no effective method other than the origi-
nal LBP (Loopy Belief Propagation) and at best its modestly
efficient implementation [3] which performs the computa-
tion in a coarse-to-fine manner. (There is also the method
that can compute the rigorous solutions of the marginal den-
sities based on the graph theory [8], whose computational
complexity is so large that it cannot be used in practical ap-
plications.)

However, there is another approach that calculates
marginal densities in a similar way to LBP: the mean field
(MF) methods. These methods have their root in the field
of solid state physics, where they were developed to model
and simulate phase transitions and other critical phenom-
ena of ferromagnetic materials. These methods were once
applied to several computer vision/image processing prob-
lems around early 90’s [11, 27], but it did not become a
mainstream method. As far as we are aware of, the methods
have not been reconsidered in the computer vision commu-
nity since then. One of a few exceptions is [25], where BP
and a naive MF equation are compared, but the compari-
son is made only for tree-structured MRFs. Another is [6],
where it is pointed out that the convolutional networks have
a connection to a MF method, but the recent developments
of the MF methods that will be studied in this paper are not
considered.

Meanwhile, in other fields such as neural network and in-
formation theory, significant developments have been made
on the MF methods [14, 7, 2, 22]. One is a variational
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framework of reinterpreting them from the viewpoint of the
minimization of free energy. In this framework, it can be
understood that LBP and MF both search for an approxi-
mate solution to the true minimizer of a free energy using
different approximation methods. Furthermore, the method
of the TAP (Thouless-Anderson-Palmer) equations [16, 14],
which were developed to improve the accuracy of the stan-
dard MF equations, have been given a new theoretical basis.

In this paper, we propose to use these MF methods, i.e.,
the naive MF equations and the TAP equations, for the prob-
lems of computer vision. Their real and potential advan-
tages to LBP are:

• More flexibility in the choice of MRF models. The
probability densities that can be dealt with are not lim-
ited to the Gaussian distribution or discrete representa-
tions.

• Faster computation. They are faster than at least the
naive implementation of LBP. They are also suitable
for parallel computing.

• Improvement of estimation accuracy. Although a naive
MF equation is less accurate then LBP, high-order TAP
equations could outperform LBP.

Although the first item is the most attractive among those
listed above, its investigation is left for a subsequent paper.
This paper focuses on examining whether the MF meth-
ods are really useful for practical computer vision problems.
Toward this ends, we consider the problems of discrete label
classification, for which LBP is mainly used.

Our contribution is summarized as follows:

• We show detailed implementations of the MF methods
including the TAP equations for practical computer vi-
sion problems.

• We present experimental results that the MF methods
show performance comparable to LBP and sometimes
even better.

This paper is organized as follows. Section 2 shows the
derivations of several MF methods including the MF equa-
tion for multi-label classification. Section 3 discusses the
advantages of the MF methods to LBP. Section 4 presents
experimental results for selected computer vision problems.
Section 5 concludes this study.

2. Derivation of MF and TAP equations

This section summarizes the derivation of MF methods,
i.e., the naive MF equation and the TAP equations.

2.1. Minimization of the free energy

The naive MF equation is classically derived by opera-
tions on the expectations of the variables [11]. A modern
approach is to formulate the problem as minimization of
free energy based on the variational principle [14]. This ap-
proach can naturally be extended to the cases of multiple

states (labels) and continuous variables, and also makes it
possible to compare the MF methods and LBP within the
same framework. In this section, we summarize the litera-
ture [14, 15] in order to make clear their comparisons de-
scribed later.

To begin with, we represent the joint density (i.e., the
Boltzmann distribution) of all sites of the MRF associated
with the energy of Eq.(1) as

Q(x) =
1
Z

exp

(
− 1

T
E(x)

)
, (2)

whereZ is the normalizing factor called a partition func-
tion andT is temperature. Introducing an arbitrary density
P(x) having some desired property, we wish to findP that
best approximatesQ. Toward this goal, we consider the KL
distance between them:

DKL (P∥Q) =
∑
x

P(x) ln

(
P(x)
Q(x)

)
. (3)

Thesubstitution of Eq.(2) into the above yields

DKL (P∥Q) =
1
T
⟨E⟩P − SP + ln Z, (4)

where⟨E⟩P andSP is the expectation of the energy and the
entropy ofP, respectively. We can neglect the third term on
the right hand side, sinceT andZ are nonnegative constants
independent ofP. The sum of the remaining terms

F(P) ≡ 1
T
⟨E⟩P − SP

=
1
T

∑
x

P(x)E(x) +
∑

x

P(x) ln P(x) (5)

is called the free energy. Thus, minimizing the KL distance
is equivalent to minimizing the free energyF(P).

2.2. Naive MF equations

Following the above, the naive MF equations are derived
as follows. The fundamental assumption here is the inde-
pendence ofxi of each site. We then define an approximate
joint densityP(x) by

P(x) =
∏

i

pi(xi). (6)

Although this assumption is generally not true, the strategy
is to selectP that best approximatesQ from the above class
of P. By substituting Eq.(6) into Eq.(5),F(p) can be written
as

F(P) =
1
T

∑
i

∑
xi

pi(xi) fi(xi)

+
1
T

∑
(i, j)∈E

∑
xi

∑
x j

pi(xi)p j(x j) fi j(xi , x j)

+
∑

i

∑
xi

pi(xi) ln pi(xi). (7)



2.2.1 Binary classification

An MF equation for binary classification problems is de-
rived as follows. Assuming each site to have a binary state
(label)xi ∈ {−1,+1}, we define the energy functionE(x) as

E(x) = −
∑

(i, j)∈E
xi x j Ji j −

∑
i

hi xi , (8)

whereJi j > 0 andhi ∈ R are constants corresponding to the
smoothness term and the data term, respectively.

In this case, the marginal densitypi(xi) can be repre-
sented by a single continuous variablemi which has a value
within [−1,1] as

pi(xi = +1) ≡ 1+mi

2
, pi(xi = −1) ≡ 1−mi

2
. (9)

This variablemi corresponds to the expectation ofxi , i.e.,
mi = pi(xi = +1) − pi(xi = −1). Substituting Eq.(8) and
Eq.(9) into Eq.(7), we can rewriteF(P) as a function only
of m = [m1, · · · ]. Since we wantm minimizing F, we dif-
ferentiate this function with respect tom to obtain

mi = tanh

 1
T

hi +
∑
j∈N i

Ji jmj


 , (10)

whereNi is the set of the neighboring sites of sitei. The
minimizing solutionm should satisfy the above equation
for all i’s. A simple approach to obtain suchm is iteratively
updatingmaccording to the above equation; the current es-
timates are set tomj ’s on the right hand side and the new
estimate is given bymi on the left hand side. After conver-
gence,pi is computed frommi by Eq.(9).

Algorithm 1 Algorithm for binary classification
1: for all i do
2: m0

i ← tanh(hi/T)
3: end for
4: repeat
5: for all i do
6: mt+1

i ← tanh[(hi +
∑

j∈N i
Ji j mt

j)/T]
7: end for
8: until convergence

2.2.2 Multi-label classification

An MF equation for multi-label classification problems is
derived as follows. Letn be the number of labels andµ
represent a label, i.e.,µ ∈ {1,2, . . . ,n}. For simplicity, we
denote the probability that sitei has labelµ by pi

µ ≡ pi(µ);
we also denotefi(xi) of Eq.(5) when sitei has labelµ by
ϵ iµ ≡ fi(µ), and fi j (xi , x j) when the pair (i,j) ∈ E of sites has

the labels (µ, ν) by ϵ i jµν ≡ fi j (µ, ν). Then, the free energy is
written as

F(P) =
1
T

∑
i

∑
µ

pi
µϵ

i
µ +

1
T

∑
(i, j)∈E

∑
µ

∑
ν

pi
µp

j
νϵ

i j
µν +

∑
i

∑
ν

pi
µ ln pi

µ.

To minimize F(P) subject to a constraint
∑
µ pi
µ = 1, we

defineJ ≡ F(P) +
∑

i λi(
∑
µ pi
µ − 1), whereλi is a Lagrange

multiplier. DifferentiatingJ with respect topi
µ and equating

the resulting expression to zero, we have

pi
µ =

1
Zi

exp

− 1
T

ϵ iµ +∑
j∈N i

∑
ν

pi
νϵ

i j
µν


 , (11)

whereZi containsλi and can be regarded as a normalizing
factor; Thus, we have

Zi =
∑
µ

exp

− 1
T

ϵ iµ +∑
j∈N i

∑
ν

pi
νϵ

i j
µν


 . (12)

Eq.(11) is the MF equation for multi-label classification.
This can be used to iteratively updatepi

µ as in the case of
binary classification. The algorithm is given as follows.

Algorithm 2 Algorithm for multi-label classification
1: for all i andµ do
2: pi

µ ← exp(−ϵiµ/T)/
∑
µ exp(−ϵ iµ/T)

3: end for
4: repeat
5: for all i andµ do
6: Updatepi

µ according to Eqs.(11) and (12)
7: end for
8: until convergence

2.3. The TAP (Thouless­Anderson­Palmer) equa­
tions

As shown above, the naive MF equations are derived
by assuming the independence of the sites and represent-
ing P(x) by Eq.(6). However, the resulting estimate will
usually have errors due to this assumption. The TAP equa-
tions, which are similar updating equations to naive MF
equations, are derived without assuming the independence
of the sites [14].

The basic idea of their derivation is as follows. The free
energyF is represented as a function ofP(x) as in Eq.(5).
Since our interest is in estimating the marginal densitypi(xi)
of each site, we consider representingF as a function of
pi(xi). Specifyingpi(xi) of each site, we consider a class of
joint densitiesP(x)’s that are consistent with the specified
p(xi)’s; note thatP(x) is not unique for the specifiedp(xi)’s.
We then search forP(x) that minimizesF in this class. The
problem is formulated as a constrained minimization prob-
lem, which is solvable in some cases.

The case of binary-label classification is as follows. In
this case, the marginal densitypi(xi) of site i is specified by
the expectationmi of xi , as shown above. Thus, when all
the marginal densities, i.e., the expectationm = [m1, . . .]⊤,
are specified, a consistentP(x) should satisfy a constraint
that the expectation⟨x⟩P of x with respect toP is equal
to m, and vice versa. Therefore, introducing a Lagrange



multiplier λ = [λ1, . . .]⊤, the problem is rewritten as the
following constrained minimization:

min
P,λ

F(P)−
∑

i

λi(⟨x⟩i −mi), (13)

The minimizingP is calculated as

P(x) =
1

Z(λ)
exp

−βE(x) +
∑

i

λi xi

, (14)

whereZ(λ) is a partition function, i.e., the normalizing fac-
tor, andβ ≡ 1/T. By using the relation of a partition func-
tion to the minimum free energy , namelyF = − ln Z, F can
be rewritten as

F(m, λ) =
∑

i

λimi − ln
∑
x

exp

−βE(x) +
∑

i

λi xi

 (15)

Now, we minimizeF with respect tom andλ. We use
here the fact thatE(x) vanishes whenβ = 0. Whenβ = 0,
the minimizingλ is simply given by the relation

mi = tanh(λi). (16)

We consider a Taylor series expansion of Eq.(15) with re-
spect toβ aroundβ = 0, i.e.,

F = F0 + βF1 +
β2

2
F2 +

β3

6
F3 + · · · , (17)

whereFn = ∂
nF/∂βn|β=0. Combining this expansion with

Eq.(16), we can expressF as a function only ofm, i.e.,F =
F(m)

By differentiatingF(m) with m, we have as many non-
linear equations as the number of sites. The equation for
site i is given as

mi = tanh
[
βhi + β

∑
j∈N i

Ji j mj − β2
∑
j∈Ni

J2
i j mi(1−m2

j )

+
2β3

3

∑
j∈N i

J3
i j(1− 3m2

i )mj(1−m2
j )

− 2β3
∑

( j,k)∈N2
i

Ji j Jjk Jkimi(1−m2
j )(1−m2

k) + O(β4)
]
, (18)

where (j, k) ∈ N2
i represents all possible pairs of neighbor-

ing sites of sitei. The above is called the TAP equation.
Since it has the form of self-consistency equations, updat-
ing m according to this equation constitutes an iterative al-
gorithm similar to naive MF.

The order of the terms on the right hand side of Eq.(18)
directly corresponds to the Taylor series expansion ofF,
which theoretically implies that more accurate solution will
be obtained by using higher-order terms. It is an interesting
coincidence that the naive MF equation is equivalent to the
first-order TAP equation.

Since the above method is based on the Taylor series ex-
pansion with smallβ, it will be theoretically effective only
whenβ is small (i.e.,T is large). However,β appears only
in the form ofβE in F, and thus it does not make sense
to discuss the choice ofβ independently of the design ofE.
Therefore, the effects of the approximation with smallβ can
only be investigated through experiments.

The overall algorithm is the same as Algorithm 1 ex-
cept that the variablemi is updated using Eq.(18) instead
of Eq.(10).

3. Advantages of MF methods

This section discusses several real and potential advan-
tages of the MF methods to LBP. LBP iterates message
passing between neighboring sites until convergence; at
each iteration, the following two steps are performed alter-
nately and independently at each site:

(a) the addition of messages from the neighboring sites
and the data term of the site

(b) the computation of messages to be sent to the neigh-
boring sites.

3.1. More flexible choice of MRF models

The MF methods are more flexible than LBP in the
choice of MRF models, especially of the representation of
the marginal densitypi(xi). LBP can handle only the Gaus-
sian distribution in the continuous domain, whereas the den-
sity functions that the MF methods can deal with are not
limited to the Gaussian distribution. The limitation of LBP
stems from the fact that in step (b), LBP marginalizes over
the variables of the neighboring sites; it is required that
the marginalized density should be represented by the same
function. Although there are methods based on particle fil-
tering to overcome this limitation [18, 5], there will emerge
other issues such as large computational complexity and dif-
ficulty with maintaining accuracy. There is no such require-
ment in the MF methods, and they could deal with all sorts
of continuous parametric density functions besides discrete
representations. However, it is necessary to derive a differ-
ent algorithm for each assumed parametric function; more-
over, it is another issue whether or not the derived algorithm
will be convergent.

3.2. Faster computation

Even in the discrete domain, as far as the computa-
tional complexity per iteration is concerned, the MF meth-
ods are faster than at least a naive implementation of LBP.
In each iteration, the MF methods merely updates the state
of the site by referring to the states of its neighboring sites.
Its computational complexity is roughly comparable to the
computation of a single message in step (b) of LBP. Thus,
LBP will be several times (i.e., the number of edges per
site) slower than MF. Moreover, LBP needs to access all
the neighboring sites to compute a single message, and thus
the number of total memory accesses is by the same fac-
tor larger than MF. When implementing on parallel systems



suchas GPU, the gap could become larger, since overall
speed tends to be constrained by the number of memory ac-
cesses in these systems.

Of course, smaller computational complexity per itera-
tion does not mean smaller overall computational cost. The
other equally important factor is the number of iterations
needed until convergence. This basically depends on each
problem and datum, and can be investigated only by exper-
iments. According to our experiments, the MF methods are
basically comparable to LBP in this repsect.

It should be noted that there are variants of LBP algo-
rithms that perform step (b) efficiently based on distance
transform [3, 1]. To be specific, the naive implementation
of step (b) has computational complexity ofO(n2) wheren
is the number of labels, while the efficient algorithms per-
form this inO(n), although they can be used for a particular
class of energy. A similar efficient method is not known for
MF. Thus, the efficient LBP algorithms will be faster than
our current implementations of the MF methods, especially
whenn is large. Note, however, that this will not be a prob-
lem if n is small.

3.3. Accuracy

As is described above, MF computes the marginal den-
sity at each site in an approximate sense, so does LBP. Thus,
our concern is with the accuracy of the approximations. As
mentioned above, MF is based on the assumption of the in-
dependence of each site, i.e., Eq.(6). LBP is based on a sup-
posedly more accurate assumption such that the marginal
density of a site is represented by

P(x) =

∏
(i, j)∈E pi j (xi , x j)∏

i pi(xi)qi−1
(19)

Thus,LBP is considered to be more accurate than the naive
MF equations to the extent of the difference between Eqs.(6)
and (19).

Although its derivation is considerably different, the
method of the TAP equation can be regarded as improving
the accuracy of the naive MF equation. Thus, which pre-
vails between the above difference of naive MF from LBP
and the improvement by the TAP equation. This generally
has to be investigated by experiments. According to our
experiments shown in Sec. 4, the 3rd-order TAP method
generally yields more accurate results than LBP.

4. Experimental results

We conducted experiments to compare the performances
of the MF methods and LBP. As example problems, we con-
sider interactive segmentation, which is a binary label clas-
sification problem, and stereo matching, which is a multi-
label classification problem. For the former, we tested the
naive MF, 2nd-order TAP and 3rd-order TAP methods, and
for the latter, we tested the multi-label naive MF method.
For LBP, we used the naive implementation of the sum-
product algorithm.

In the experiments, Intel Core i7 2.67GHz CPU and
nVidia GeForce GTX480 GPU were used. MSVC2010
is used for implementations on the CPU;/fp:fast op-
tion is specified to maximize the performance of floating
point arithmetic and further the code is parallelized using
OpenMP. CUDA is used for implementations on the GPU.

4.1. Interactive segmentation

Following the same procedure as GrabCut [17], we
use brushes to roughly specify the foreground and the
background pixels of an image, as shown in Fig.1, from
which their color models are learned. We used the func-
tions calcNWeights() and constructGCGraph() from
OpenCV2.3 to generate the energy function, where the pa-
rameters were set asγ = 50 andλ = 450. Defining the
variablexi to indicate whether the pixeli is foreground or
background, each method estimates the marginal density of
Q(x) at each pixel. The parameterT was empirically cho-
sen asT = 80. For target images, we used an image from
[13] and four images from the dataset of [12].

In the original GrabCut, optimization is iteratively per-
formed a few times, while the Gaussian mixture models
(GMMs) of the foreground and background pixels are up-
dated at each iteration. When the same procedure is carried
out in our case,the MF methods and LBP yielded almost
identical results; they are too close to find a significant
difference in terms of accuracy. (The results are also al-
most the same as those of GC, when each pixel is clas-
sified as foreground and background by thresholding with
p = 0.5.) Therefore, we carry out the optimization only
once while fixing the energy initially determined by manual
brushes. For the purpose of evaluating the accuracy of the
estimation of the marginal densities, we also estimate them
by Gibbs sampling [9] and use the estimates as the ground
truths. In this computation, a sufficient number (=20000)
of samples are generated and used per pixel.

Figure 1 shows the results for the imageBird from [13].
The size of the images is 640×480 pixels. The brightness of
each pixel represents the probability that the pixel belongs
to the foreground; white is 1.0 and black is 0.0. Compar-
ing the results of the three MF methods with the ground
truth obtained by Gibbs sampling, it is observed that the er-
rors tend to decrease in the order of MF, 2nd-order TAP,
and 3rd-order TAP. This is more clearly seen in Fig.2 which
shows how the errors decrease with the number of itera-
tions. This improvement in accuracy is considered to be due
to the effect of the higher-order terms of the TAP equations.
Moreover, it is observed from Fig.2 that LBP has smaller er-
rors than 2nd-order TAP, but has larger errors than 3rd-order
TAP. This can be visually confirmed in Fig.1.

Table 1 shows the computational time of 100 iterations
for each method. It is seen from this table that as compared
with LBP, the three MF methods are 3-5 times faster on
CPU and 6-10 times faster on GPU. This increase in speed
is due to the fact that at each iteration, LBP needs to com-
pute messages in eight directions, one of which is computa-
tionally comparable to a single iteration of the MF methods.



Original Specifiedlabels Gibbs sampling (0.0%)

Naive MF (13.0%) 2nd-order TAP (12.0%) 3rd-order TAP (6.1%) LBP (10.6%)

Figure 1. Results of interactive segmentation for an imageBird. The numbers in the parenthesis are the residual errors after convergence
of each method. The methods are ordered from inaccurate to accurate: MF, 2nd-order TAP, LBP, and 3rd-order TAP.
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Figure2. Errors per pixel for interactive segmentation vs. the num-
ber of iterations.

Table 1. Computational time for 100 iterations of each method.
CPU[ms] GPU[ms] CPU/GPU

MF 730.0 16.8 43.5
TAP(2nd) 782.12 17.6 44.4
TAP(3rd) 1344.45 26.3 51.1
LBP 4253.01 163.61 26.0

It should also be noted that comparing CPU and GPU im-
plementations, the speed ratios are 40-50 for the MF meth-
ods, whereas that for LBP is only 26.0. This is attributable
to the fact that LBP requires more memory accesses than
the MF methods.

Figures 3 and 4 show the results forFlower, Horse,
Starfish, andTiger from the dataset of [12]. Figure 5
presents the residual errors after convergence for each
method. It can be seen that the same observation as above
holds true for these images; the result is more accurate in
the order of MF, 2nd-order TAP, LBP, and 3rd-order TAP.

4.2. Stereo matching

We also performed experiments of stereo matching. We
used Middlebury MRF energy minimization library [21] to
generate the energy function with the parameters (|L| = 16,
λ = 20, and truncated= 2). The naive MF algorithm for
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Figure5. Residual errors per pixel for the four images

multi-label classification (Algorithm 2) and LBP were ap-
plied to theTsukubadata. As in the above, we used Gibbs
sampling with a sufficient number (=100000) of samples
to obtain the ground truth of the marginal density of each
pixel. We empirically set the temperature asT = 20.

Figure 6 shows the results. The residual errors for MF
and LBP are 8.9% and 8.0%, respectively. Thus, the error
of LBP is smaller reflecting the approximation accuracies
of the two methods. However, the estimation results are vi-
sually comparable; MF does not appear to be much inferior
to LBP. Figure 7 shows the error of the estimate obtained
by the MF method versus the number of iterations. It is
observed that the error decreases at a reasonable speed as
compared with the standard results of LBP reported in the
literature (e.g., [3]). Computational time for 100 iterations
are 5.0 sec. for MF and 13.5 sec. for LBP. Thus, MF is
about three times faster. This matches our earlier analysis;
the MRF graph of this problem has four edges at each pixel.

5. Summary and discussions

In this paper, we have investigated whether the MF meth-
ods are useful for practical problems of computer vision. To
be specific, we applied the naive MF equations and the TAP
equations to interactive segmentation and stereo matching.
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Figure3. Input images and specified labels for interactive segmentation (Horse, Flower, StarfishandTiger).
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Figure4. Results for the four images (Horse, Flower, StarfishandTiger).

We have presented experimental results to compare the
MF methods and LBP. They show that the MF methods
show performances at least comparable to LBP. The naive
MF equation is less accurate than LBP, which is consis-
tent with theoretical analysis. However, the 3rd-order TAP
equation yields more accurate estimates than LBP. As com-

pared with the naive implementation of LBP, the MF meth-
ods are faster in terms of a single iteration than LBP. The
gap becomes even larger for their implementations on GPU.

We think that being shadowed by LBP, the MF methods
have not been correctly evaluated in our community. We
suspect that a possible reason to this is in the choice of the
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Figure 6. Results of stereo matching. The numbers in the paren-
theses are residual errors after convergence for each method.
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iterations.

parameterT (or equivalently,β = 1/T). This parameter can
be merely regarded as a scaling parameter of the energy, as
in Eq.(2), and therefore it is often simply neglected. This
is particularly the case with computer vision problems, in
which the energy functions are usually designed by hand
for each problem and thus are not based on physics. How-
ever, in our experiences, assuming a fixed energy function,
T controls the trade-offbetween global convergence and
convergence speed, and its optimal value tends to be dif-
ferent for LBP and the MF methods. To be specific, larger
values need to be set toT for the MF methods. Therefore, as
far as global convergence is concerned, it can occur that the
MF methods do not converge well for the sameT (and the
energy) as the ones for which LBP works fine. This might
have led to a (wrong) observation that the MF methods per-
forms poorly as compared with LBP. To further investigate
the true implication of this to the performance of the MF
methods, more experiments need to be conducted, which
will be a future work.

As has been discussed, the MF methods have several at-
tractive properties such as being able to handle more flexible
MRF models. In addition to the one mentioned above, the
future work includes the derivation of the TAP equations

for multi-label classification and the MF/TAP equations for
various continuous parametric density functions other than
the Gaussian distribution.
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