
Exercises in Computer-Aided 
Problem Solving
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1. Introduction to this course

• Instructors and course information

• Purpose of this course

• Important remarks

• Assignment submission

• Schedule

• Overview of Octave/MATLAB

• Installing GNU Octave to your PC
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Instructors and course information

Hitomi Anzai

Assistant professor of Institute of Fluid Science

Email: hitomi.anzai.b5@tohoku.ac.jp

Mickael Laine

Assistant professor of Graduate School of Engineering

Email: laine.mickael@tohoku.ac.jp

Yutaro Kohata

Teaching Assistant

Email: yutaro.kohata.t4@dc.tohoku.ac.jp 

Course information

Google Classroom class code: kvssylh

Link for streaming session using Meet: 

https://meet.google.com/lookup/el2bghbaoy

Material from previous year

www.vision.is.tohoku.ac.jp/us/course/computer-aided-problem-solving/
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Purpose of this course

• Students will learn how a computer can be used to solve mathematical 

problems. 

• Although the course will use Octave for this purpose, its focus is more on 

mastering mathematical skills rather than learning how to use it. 

• Starting with the basic usage of Octave (or MATLAB) and how to write a 

program on it, students will learn how they can solve various mathematical 

problems by writing and executing simple programs. 

• The course will cover not only mathematics that students have already 

learned, such as calculus, differential equation, linear algebra, etc., but also 

those that they have not learned, such as numerical computation, signal 

processing, statistics, machine learning, etc.

• The goal of this course is to have students master skills of solving the 

specific problems considered in this course using Octave (or MATLAB) and 

further obtain a concept of how they can utilize a computer to deal with 

novel problems.
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Important remarks

• All students are required to use their own computers and must access the 
class via Google Classroom. 

• Exercise problem(s) will be assigned to students for each lecture.

• The lecture material and videos will cover the necessary topics to solve the 
exercises.

• There will is no assignment for the 1st lecture, but you can submit a report as 
a test.

• Students are required to submit all exercise problems given on each class 
day in a week.

• E.g., Exercises on a Monday must be submitted until the next Monday, etc.

• Submission is done via Google Classroom (see Assignment Submission 
material).

• Grading will be based only on reports.

• If you have trouble, contact us either via e-mail or Google Classroom.

• Do NOT put your questions to lecturers on your assignment file. 

• When sending e-mail, please send it to all instructors.
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Assignment Submission

• The report file must be a PDF format and contain scripts, results
(command output, plots, etc.) and an explanation.

• Report filenames must be CAPS_02_B9TBXXXX.pdf, where “02” is the
number of the lecture and “B9TBXXXX” is the student number.

• The Script file must also be submitted.

• Script filenames must be CAPS_02_B9TBXXXX_ScriptName.m, where
“ScriptName” can be any name.

• Submit your reports and script files via Google Classroom.

• The deadline is one week after the lecture (can be seen in Google
Classroom).

• You may send a revised revision after the deadline.

• There is no final examination. To get credit in this class, submit all reports
for lectures from 2 to 13 before deadline.

• Showing only a script and its explanation to solve the exercise will only get
an average grade. Detailed explanations of your solutions and additional
work will get additional points.

• Copying from other people or past reports will NOT be evaluated.
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Schedule
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April 12 (Mon) 1. Introduction and installation of Octave

April 16 (Fri) 2. Fundamentals of Octave/MATLAB

April 19 (Mon) 3. Matrices and linear algebra I

April 23 (Fri) 4. Roots of algebraic and transcendental equations

April 26 (Mon) 5. Least-square method and line fitting

April 30 (Fri) 6. Numerical integration and ordinary differential equations

May 3 (Mon) Holiday

May 7 (Fri) 7. Signal processing

May 10 (Mon) 8. Probability theory: basics

May 14 (Fri) 9. Statistics I

May 17 (Mon) 10. Matrices and linear algebra II

May 21 (Fri) 11. Statistics II

May 24 (Mon) 12. Machine learning I

May 28 (Fri) 13. Machine learning II

May 31 (Mon) 14. (backup for schedule change)

June 4 (Fri) 15. (backup for schedule change)

June 7 (Mon) 16. (backup for schedule change)



MATLAB / Octave

MATLAB

• A numerical computing environment 
and programming language 
developed and sold by MathWorks

• De facto standard in many 
scientific/engineering fields the world 
over

• A wide variety of extensions, called 
toolboxes, are available for use in a 
diverse field of applications

GNU Octave

• A numerical computing environment 
and programming language 
developed by volunteers and can be 
used for free

• Compatible to MATLAB to a certain 
degree

• A variety of extensions called 
packages, the counterpart of the 
toolboxes, is available but has only 
limited compatibility
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Installing Octave to your PC (1/3)

• To install the Windows version of Octave, follow the procedures below

• Access the following URL with a Web browser and click “Download”

• https://www.gnu.org/software/octave/

9

Click here



• Further select “Windows” and click the link then appeared

Installing Octave to your PC (2/3)
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Click here

Click here if you have recent Windows 
(Windows 7, Windows 8, Windows 10 )

Click here if you have very old Windows.
If you don’t know, you don’t need this.



Installing Octave to your PC (3/3)

• Run the downloaded .exe file by clicking it

• Neglect the following message about JRE(Java runtime environment) by 
clicking “Yes” and continuing the installation

• You will have to wait for a few minutes until the completion
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• If you already have Homebrew, MacPorts or Fink, you should be 
able to Install Octave via them.

• In other cases, you can try an App Bundle
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Installing Octave to your Mac (1/2)

Click here

Then, click here

Finally, click here



Installing Octave to your Mac (2/2)
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Click and download.

Be sure to follow 
installation notes!



Exercises 1.1 (assignments)

• You don’t have to submit assignments for the first lecture.

• As a test, an assignment will be created under the CAPS01 topic 
in Google Classroom, which you can submit as practice.

• Please follow the guidelines in “Assignment Submission” material.
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2. Fundamentals of Octave (&MATLAB)

• Octave GUI(Graphical User Interface)

• Command Window

• Scripts

• Variables 

• Matrices

• Arithmetic operations & special values

• Mathematical functions

• Input/output with files

• Loops

• Conditional branch & flow control

• Plotting grpahs

15



Octave GUI

16

Editor window

Command window
Command history

Workspace



Using Command Window

• Example: Type “1+2” and press the Enter key after the prompt “>>”

• You can create a 2x2 matrix A by typing as follows:

• You can calculates its inverse by typing ”inv(A)” followed by Enter

17

>> 1+2

ans =  3

>>

>> A=[1,2;3,4]

A =  

1   2

3   4

>> inv(A)

ans =

-2.00000   1.00000

1.50000  -0.50000



Writing a script file
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A=[1,2;3,4]

inv(A)

>> A=[1,2;3,4]

A =  

1   2

3   4

>> inv(A)

ans =

-2.00000   1.00000

1.50000  -0.50000

• Type as follows in the Editor window, select “Save File”-“File” in the 
Editor window menu, type “hello”, and click “Save”

• The script should be saved as “hello.m”

• Type “hello” followed by Enter to run the contents 

• Same as choosing “Save File and Run”-”Run” in the menu



Using variables

• You can create and use a variable like A in the earlier example

• The name of a variable should be different from existing files and variables

• There is no limitation in the length of variable names; it must be less than 
19 characters in MATLAB, though

• All the variables you created so far will be displayed in Workspace

• You can remove a variable with the data by typing clear
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>> clear A

>> the_1st_variable=[1;2];

>> the_1st_variable

the_1st_variable =

1

2

• Numeric characters and ‘_’ 
(underscore) can be used for 
variable names

• Result won’t be displayed by typing 
‘;’(semicolon) at the end



Using matrices

• The most fundamental data representation in Octave/Matlab

• A matrix of any size can be created by using ‘,’ to separate elements and 
‘;’ to separates rows;

• You can get the size of a matrix using a built-in function size
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>> B=[1,2;2,3;3,4]

B =

1   2

2   3

3   4

>> A=[1,2,3;2,3,4]

A =

1   2   3

2   3   4

2x3 matrix 3x2 matrix

>> size(A)

ans = 

2   3

>> size(B)

ans = 

3   2



Arithmetic operation and special values

• Basic operators：+, -, *, /

• Exponentiation：^

• π
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>> base1=3.0;base2=5.0;height=3.0;

>> area=(base1+base2)*height/2

area =  12

>> 2^40

ans =    1.0995e+12

base1

base2

h
e

ig
h

t

>> pi

ans =  3.1416

>> i

ans =  0 + 1i

>> j

ans =  0 + 1i

>> exp(-pi*i)

ans = -1.0000e+00 - 1.2246e-16i

• Imaginary unit：i or j

(Euler's formula)



Mathematical functions

• Trigonometric functions

• sin, sinh, asin, cos, cosh, acos, tan, tanh, atan, atan2

• Exponential, log functions, etc.

• exp, log, log10, sqrt

• Various operations on matrix elements

• sum, max, min, sort, mod

• Absolute value and complex numbers

• abs, conj, imag, real
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>> sin(pi/2)

ans =  1

>> sin(pi)

ans =    1.2246e-16

>> log(e)

ans =  1

>> A

A =

1   2   3

2   3   4

>> sum(A)

ans =

3   5   7

>> sum(sum(A))

ans =  15

>> a=2.0-3.0j

a =  2 - 3i

>> imag(a)

ans = -3

>> real(a)

ans =  2

>> abs(-a)

ans =  3.6056

>> conj(a)

ans =  2 + 3i



Input and output with files

• You can write the value of a variable into a specified file:

• Then read the written value from the file:

• You can also save/load the whole contents of Workspace into/from a 
specified file
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>> save(‘A.txt’, ‘A’)

>> load(‘A.txt’)

>> A

A =

1   2   3

2   3   4

>> B=load(‘A.txt’)

>> B.A

ans =

1   2   3

2   3   4

>> save(‘workspace1’)

>> load(‘workspace1’)



Loops

• Repeat a series of commands with for index=start:step:end … end

24

# loop1.m

for i=1:10

x = 2^i;

printf('%d: %f¥n', i, x)

endfor

>> loop1

1: 2.000000

2: 4.000000

3: 8.000000

4: 16.000000

5: 32.000000

6: 64.000000

7: 128.000000

8: 256.000000

9: 512.000000

10: 1024.000000

# loop2.m

# calculate position of a vehicle

# with a constant acceleration

a = 1.0; # acceleration

for t=0.0:0.5:3 # time

y=.5*a*t^2; # position

printf('%f: %f¥n', t, y)

endfor

>> loop2

0.000000: 0.000000

0.500000: 0.125000

1.000000: 0.500000

1.500000: 1.125000

2.000000: 2.000000

2.500000: 3.125000

3.000000: 4.500000

Script

Result



Conditional branch & flow control

• if-elseif-else-end structure
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#ifelse1.m

if x > 3.0 && y > 2.0

disp('one')

elseif x > 1.0

disp(’two')

else  

disp(‘three')

endif

>> x=4;y=5;

>> ifelse1

one

>> x=2;y=5;

>> ifelse2

two

>> x=y=0;

>> ifelse1

three

Script

Results

two

one

th
re

e

x

y

x
=

1

x
=

3

y=2

#ifelse2.m

if x < 3.0 || y < 2.0

if x < 1.0  

disp(’three')

else

disp(‘two’)

end

else

disp(‘one')

endif

Logical AND
(if both are true)

Logical OR
（if either is true）

x <= y   less 

than

or equal

x == y   equal

x >= y   

greater than

or equal

x != y    not 

equal

Comparison Operators



Plotting a graph

• plot(x,y), where x is a vector of length m storing x coordinates and y
is a vector of the same length storing y coordinates
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>> x=-pi:pi/100:pi;

>> y=x.^2;

>> plot(x,y)

>> xlabel('x'), ylabel('y'), title('sin & cos')

>> legend('sin(x)','sin(x+pi/4)','cos(x)')

>> set(0,"defaultaxesfontsize",20)

>> set(0,"defaulttextfontsize",20)

>> plot(x,sin(x),x,sin(x+.25*pi),x,cos(x))

• To change font sizes (before calling plot)

• To plot different curves in a single graph

• To set axis labels, titles, and legends

‘.^’ expresses 
squaring each element



Exercises 2.1 (assignments)

• Find all numbers of 3 digits such that the sum of the cubes of its digits 
equals the number itself; an example is 153, because 13+53+33 = 153

• Revise the script below to find these numbers

• Write a script that finds the same numbers in a different way by filling 
in the blanks below:
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for i = 100:999

i1 = mod(i, 10);

i2 = mod(floor(i/10), 10);

i3 = floor(i/100);

disp([i3 i2 i1])

endfor

for i3 = 1:9

for i2 = 0:9

for i1 = 0:9

endfor

endfor

endfor

Hint: This script scans every three-
digit number and gets its three digits



3. Matrices and linear algebra I

• Accessing elements 

• Basic operations

• Norms

• Inverse matrix

• Linear equation

28



Accessing elements

• As you have learned, ’；’ indicates the end of a row; matrices of any 
size can be created in this way

• Specify row and column indices to access an element

• A whole row or a whole column can be represented using ‘:’

29

>> A(2,3)

ans =  4

>> A(1,2)

ans =  2

>> B(3,:)

ans =

3   4

>> B(:,1)

ans =

1

2

3

>> B=[1,2;2,3;3,4]

B =

1   2

2   3

3   4

>> A=[1,2,3;2,3,4]

A =

1   2   3

2   3   4



Quick creation of several matrices by functions

• Identity matrix: eye (m)

• Matrix of all 1’s: ones(m,n)

• Matrix of all 0’s: zeros(m,n)

• Matrix of random numbers: rand, randn

• rand generates random numbers uniformly distributed in the range [0,1]

• randn generates random numbers from the normal distribution with zero mean and 
variance one

30

>> rand(3,2)

ans =

0.562728   0.057675

0.697043   0.442021

0.839662   0.310947

>> randn(3,2)

ans =

1.12010  -0.96770

-1.36156  -0.45994

0.38406   2.33878

>> eye(3)

ans =

Diagonal Matrix

1   0   0

0   1   0

0   0   1 

>> ones(3,2)

...

>> zeros(2,10)

...

Remark: You can also use ones(m) and 
zeros(m) to produce square matrices.



Arithmetic operations on matrices (1/2)

• Addition(+)，subtraction(-)，transpose(‘)

• Mutiplication

• Determinant

31

>> A+B‘

ans =

2   4   6

4   6   8

>> A'+B

ans =

2   4

4   6

6   8

>> A+B

error: operator +: nonconformant

arguments (op1 is 2x3, op2 is

3x2)

>> C=A*B

ans =

14   20

20   29

>> D=B*A

ans =

5    8   11

8   13   18

11   18   25

>> det(C)

ans =  6.0000

>> det(C')

ans =  6.0000

>> det(D)

ans =    1.7764e-15



Arithmetic operations on matrices (2/2)

• Element-wise product (.*) and division (./)

• Power of a square matrix (^)

• Element-wise power (.^)
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>> A.*B‘

ans =

1     4     9

4     9    16

>> A./B‘

ans =

1     1     1

1     1     1

>> (A*A‘)^2

ans =

596    860

860   1241

>> (A*A‘).^2

ans =

196    400

400    841

>> A*A‘

ans =

14   20

20   29



Norm of vectors and matrices

• Norm of a vector：norm(x,p)

• Norm of a matrix：norm(X,p)

• E.g., Frobenius norm*

33

>> x=[1,3,2];

>> norm(x)

ans =    3.7417

>> norm(x,2)

ans =    3.7417

>> norm(x,1)

ans =     6

>> norm(x,inf)

ans =     3

>> X=randn(3,4);

>> norm(X,’fro‘)

ans =

3,4349

>> sqrt(trace(X*X'))

ans =

3.4349

*https://en.wikipedia.org/wiki/Matrix_norm



Inverse matrices

• The inverse A-1 of a square matrix A can be calculated by inv
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>> A=randn(3,3)

A =

0.087948   1.279500   0.060176

-1.494407  -0.188317  -0.918068

-1.063032   1.306333   0.734150

>> B=inv(A)

B =

0.4055585  -0.3289932  -0.4446546

0.7923708   0.0491297  -0.0035107

-0.8226907  -0.5637950   0.7245167

>> B*A

ans =

1.00000   0.00000  -0.00000

-0.00000   1.00000   0.00000

0.00000  -0.00000   1.00000

>> A*B

ans =

1.00000   0.00000   0.00000

0.00000   1.00000   0.00000

-0.00000   0.00000   1.00000



Linear equations

• Use operator ‘¥’ (Gaussian elimination) or inversion inv
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>> A=[2,2,1;3,-1,3;2,-1,-3]

A =

2   2   1

3  -1   3

2  -1  -3

>> b=[0;3;-1]

b =

0

3

-1

>> A¥b

ans =

0.19512

-0.51220

0.63415

>> inv(A)*b

ans = 

0.19512

-0.51220

0.63415

A simultaneous equation:

Its vector-matrix notation:

The solution:Remark: In general, 
inverse matrices should not 
be used for solving linear 
equations, particularly very 
large ones, from the 
perspective of 
computational efficiency 
and numerical accuracy



Gaussian elimination*

36*https://en.wikipedia.org/wiki/Gaussian_elimination



Exercises 3.1

• Suppose we have three points in 3D space and their coordinates are 

(x,y,z)=(0.2+rx1, -0.1+ry1, 1.0+rz1), (3.0+rx2, 0.1+ry2, -1.0+rz2), and 

(1.0+rx3, -2.0+ry3, -0.5+rz3), respectively. r is a random number 

between -0.1 and 0.1. Find a plane passing through these three points. 

Note that the equation of a plane that does not pass through the origin 

(0,0,0) is given by

37

A plane in 3D space passing through 
three points and not through the origin

Hint：Set up simultaneous 

linear equations and solve it to 

determine unknowns (a,b,c)



4. Roots of algebraic and transcendental 
equations

• Roots of algebraic (polynomial) equations

• User-defined functions

• Roots of transcendental equations

• Symbolic computation

38



Roots of polynomial equations: roots

• To find the roots of a 2nd order polynomial equation x2-x-2=(x-
2)(x+1)=0, type as follows:

• Roots of a 3rd order equation x3+1=0 are calculated as follows:

39

>> C=[1,-1,-2];

>> roots(C)

ans =

2

-1

>> C=[1,0,0,1];

>> roots(C)

ans =

-1.00000 + 0.00000i

0.50000 + 0.86603i

0.50000 - 0.86603i



User-defined functions

• You can define an arbitrary function by writing a script of the form:

• Save the following script into, say, “myfun.m”

• You can call it as a function in the following ways:

40

#myfun.m

function y = myfun(x)

y = x^2+sin(x)-1;

endfunction

function [y1,...,yN] = myfun(x1,...,xM)

y1 = ...

...

endfunction

>> myfun(0)

ans = -1

>> myfun(1)

ans = 0.84147

Remark: These commands must be run in the 
same directory (folder) as myfun.m was saved. 
Or you can add the directory where myfun.m
exists to Octave’s load path; type “help path” for 
details.



Anonymous function

• You can use anonymous function, which is another way of creating a 
user-defined function

• An example of functions with two (and more) variables:

41

>> myfun1 = @(x) (x^2+sin(x)-1);

>> myfun1(1)

ans = 0.84147

>> myfun2 = @(x,y) (x.^2+y.^2+x.*y);

>> [X,Y] = meshgrid(-10:10);

>> mesh(X,Y,myfun2(X,Y))

Remark: The use of x.^2 instead of x^2 above 
makes it possible to deal with the case when x 
is a matrix (or a vector or even a tensor). 



Roots of transcendental equation: fsolve

• To find roots of x2+sin(x)-1 =0, type as follows:

• fsolve tries to find a root starting from given 
initial value

• It can fail to find any root; the success depends 
on the equation and the provided initial values

42

>> fsolve(@(x) x^2+sin(x)-1, 1.0)

ans =  0.63673

>> fsolve(@(x) x^2+sin(x)-1, -1.0)

ans = -1.4096

y=x^2+sin(x)-1

y

x

From https://www.gnu.org/software/octave/doc/



Symbolic package

• Extends Octave to enable symbolic computation

• Function solve in MATLAB has not been implemented as of today

• To install symbolic package, visit 
https://github.com/cbm755/octsympy and follow the instruction.

• To use this package, type the following in Command Window:

• To start symbolic computation, you must 
first declare a symbolic variable by syms

• A symbolic representation of a function:

43

>> pkg load symbolic

>> syms x

>> x^2+sin(x)-1

ans = (sym)

2

x  + sin(x) - 1

Note: Besides 
MATLAB/Octave, there are a 
lot of symbolic computation 
software, or computer 
algebra systems;  Wolfram 
Mathematica is a popular one

http://www.wolframalpha.com

https://github.com/cbm755/octsympy


Symbolic package: factorization

• Factorization of a polynomial: factor

44

>> syms x

>> f=x^3+13*x^2-105*x+171;

>> factor(f)

ans = (sym)

2

(x - 3) *(x + 19)

>> syms x y

>> f=x^3*y-3*x^3-4*x^2*y+12*x^2-3*x*y+9*x+18*y-54;

>> factor(f)

ans = (sym)

2

(x - 3) *(x + 2)*(y - 3)



Symbolic package: differential

• Symbolic differential: diff

45

>> diff(x^2+sin(x)-1)

ans = (sym) 2*x + cos(x)

>> diff(exp(-x*sin(x)))

ans = (sym)

-x*sin(x)

(-x*cos(x) – sin(x))*e

Remark: If some special 

characters such as 𝑒𝑥 or √ are 
not displayed properly, try the 
“sympref display ascii” command 
to switch to ascii mode.



Symbolic package: indefinite integral

• Indefinite integral：int

46

>> int(sin(log(x)))

ans = (sym)

x*sin(log(x))   x*cos(log(x))

------------- - -------------

2               2

>> int(x^2+sin(x)-1)

ans = (sym)

3

x

-- - x - cos(x)

3  



Exercises 4.1

• Find all the roots to the following equation

• A, B, C, D are constant value, which is identified by your student number.

• If your student number is ‘C6TB1234’, A=1, B=2, C=3, and D=4.

• Hint: You must specify good initial values to use fsolve. To do so, plot the 
function y=f(x) in the interval [0,5] as follows and make guesses of possible 
roots. 

47

>> x=0:0.01:5;

>> y=10*sin(A*x).^2.*exp(-B*x/2) + 0.01*(C+D)-0.3;

>> y0=zeros(1,length(x));

>> plot(x,y,x,y0)

10 ∙ 𝑠𝑖𝑛2 𝐴𝑥 ∙ exp −
𝐵𝑥

2
+ 0.01 𝐶 + 𝐷 𝑥 − 0.3 = 0, (0 ≤ 𝑥 ≤ 5)

e.g.) C 6 T B 1 2 3 4

= = = =

A  B  C  D



5. Least square method and line fitting

• Pseudoinverse

• Overdetermined system of linear equations

• Line fitting

48



Pseudoinverse (aka Moore-Penrose pseudoinverse or generalized inverse)

• Assuming that a m✕n matrix A is a real matrix and ATA is invertible, the 
pseudoinverse A† for matrix A is defined to be

• The following always holds:

• This is because:

• Note that if m≠n, the following always holds:
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m

n -1



Calculating a pseudoinverse

• Function pinv gives the pseudoinverse of a given matrix

• The left multiplication to A yields an identity matrix
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>> A=randn(5,3)

A =

-1.000354   0.027611   0.065035

-3.013282  -0.687265  -0.462170

-1.345817  -0.410357   1.915242

-0.480726   0.027323   1.544261

-0.512782   0.230256  -0.269629

>> pinv(A)

ans =

-0.3005504  -0.1638335   0.0394693  -0.1490451  -0.3649408

1.1103074  -0.5201691  -0.5397881   0.7475318   1.6065569

0.0075412  -0.1606289   0.2720726   0.2571976  -0.0259860

>> pinv(A)*A

ans =

1.0000e+00   2.7756e-16  -1.5266e-16

-5.5511e-16   1.0000e+00   7.2164e-16

2.9490e-17   7.9797e-17   1.0000e+00

Remark: the right 
multiplication does not 
yield an identity



Overdetermined system of linear equations

• Consider a system of linear equations with a more number of equations 
than unknowns

• A: m x n matrix（m>n）

• In general, an overdetermined system does not have a solution

• We calculate a “solution” as follows:

• It can be shown that this solution x minimizes 

• This solution is thus called the least square solution
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=

m

n

m>n → Called overdetermined

m<n → Called underdetermined



Line fitting: an example

• Salary and years of service of employees in Japan
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Years of service <5 <10 <15 <20 <25 <30 <35
Salary (mil. JPY) 370.8 459.4 533.8 597.7 669.7 719.7 753.8

>> years=5:5:35

years = 

5   10   15   20   25   30   35

>> income=[371,460,534,598,670,720,754];

>> plot(years,income,”o”)

>> axis([0,40,0,900])

>> set(gca,”fontsize”,14)



Line fitting: least square method (1/2)

• Fit a line y=ax+b to a set of points {(x1,y1), …, (xN,yN)} so that the 

difference in y axis will be small for each (xi,yi)

• To do so, find (a,b) that minimizes the sum of the differences for all the 

points
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The right hand side can be rewritten as:



Line fitting: least square method (2/2)

• Thus, the problem reduces to solution of a linear equation Xp=y

• Its solution (i.e., least square solution) is given using pseudoinverse 

X†as
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>> X=ones(7,2);

>> X(:,1)=years’;

>> y=income’;

>> p=pinv(X)*y;

>> hold on

>> xx=0:1:40;

>> plot(xx,p(1)*xx+p(2))



Exercises 5.1

• The table to the right shows the number 
of Nobel laureates per capita (i.e., divided 
by population) and chocolate 
consumption per capita for different 
countries

• It has been discovered that there is a 
strong link between these two cultural 
traits (Nobel laureates and chocolate 
consumption)

• Franz H. Messerli, Chocolate Consumption, Cognitive Function, and 
Nobel Laureates, the New England Journal of Medicine, 367, 1562-
1564, 2012

• Fit a line to the data and plot the results

• You can download the file 
(‘Nobel_vs_choco.txt‘) from Google Class 
CAPS05 assigment.

• Add an imaginary „CAPS Kingdom“, which 
has 10×(A+B) Nobel laureates per capita 
and consumes 0.5×(C+D) kg/y/head of 
chocolate, then show and plot how the 
fitted line changes. A, B, C and D are the 
last 4 digits from your student number 
(see Excercise 4.1).
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3743834/

Nobel laureates 
per capita

Chocolate consumption 
per capita (kg/y/head)

Sweden 31.855 6.6

Switzerland 31.544 10.8

Denmark 25.255 8.6

Austria 24.332 7.9

Norway 23.368 9.8

UK 18.875 10.3

Ireland 12.706 8.8

Germany 12.668 11.4

USA 10.706 5.1

Hungary 9.038 3.5

France 8.99 7.4

Belgium 8.622 6.8

Finland 7.6 7

Australia 5.451 6

Italy 3.265 3.3

Poland 3.124 4.5

Lithuania 2.836 6.1

Greece 1.857 4.5

Portugal 1.855 4.5

Spain 1.701 3.3

Japan 1.492 2.2

Bulgaria 1.421 2.2

Brazil 0.05 2.5



6. Numerical integration and ordinary 
differential equation

• Numerical integration (definite integral)

• Double integral

• Initial value problem of ODEs
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Numerical integration

• The value of a definite integral can be calculated using quad

• E.g., To calculate the following definite integral:

• You can plot the original function by
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>> quad(@(x)(log(x)/(1+x^2)), 0, 10)

ans = -0.32938

>> x=0:0.1:10;

>> plot(x, log(x)./(1+x.^2)))

Remark: Recall element-wise 
operations of matrices/vectors have a 
preceding period, e.g., ’./’  and ‘.^’



Double integral

• The value of double integral can be calculated using dblquad

• E.g., To calculate the volume of a part of the hemisphere of a unit 
sphere
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>> dblquad(@(x,y)(sqrt(1-x.^2-y.^2)),0,0.5,0,0.5)

ans =  0.22774



Initial value problem of ODEs

• Four steps to solve an initial value problem of an ODE

1. Derive differential equations describing the target system

2. If they are 2nd and higher order ODEs, convert them into a 
system of 1st order ODEs by incorporating new variables

3. Create a function (a script file) that calculates the 
derivatives of the variables from their values and time 

4. Calculate how each variable changes with time using 
function ode45 by providing it with initial values of the 
variables and a time interval to consider. 
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Example

• Suppose that a metal ball with mass m [kg] is thrown into space 
with elevation angle θ [rad] and initial velocity v0 [m/s]

• The equation of motion is represented with coordinates (x,y) as
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（Const. velocity） （Standard acceleration due to gravity）



How to solve the example problem (1/2)

• Let (vx,vy) be the velocities of the ball in the x and y axis, respectively

• Convert the equations in the last page into the 1st order diffenretial eq. 
wrt. x, y, vx, and vy

• Create a function that calculates these derivatives

• Let p be a 4-vector storing x, y, vx, vy at time t

• Write a function that calculates the derivative dp/dt from t and p
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function dp = deriv_fun(t, p)

g = 9.81;

dp = [p(3), p(4), 0, -g];



How to solve the example problem (2/2)

• Call function ode45 with a time interval and initial values 
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warning: Option "RelTol" not set, new value 0.000001 is used

warning: called from    ode45 at line 113 column 5

warning: Option "AbsTol" not set, new value 0.000001 is used

warning: Option "InitialStep" not set, new value 0.050000 is used

warning: Option "MaxStep" not set, new value 0.050000 is used

T =

0.00000

0.05000

0.10000

0.15000

0.20000

0.25000

0.30000

0.35000

0.40000

0.45000

0.50000

0.50000

result =

0.00000   0.00000   4.00000   2.00000

0.20000   0.08774   4.00000   1.50950

0.40000   0.15095   4.00000   1.01900

0.60000   0.18964   4.00000   0.52850

0.80000   0.20380   4.00000   0.03800

1.00000   0.19344   4.00000  -0.45250

1.20000   0.15855   4.00000  -0.94300

1.40000   0.09914   4.00000  -1.43350

1.60000   0.01520   4.00000  -1.92400

1.80000  -0.09326   4.00000  -2.41450

2.00000  -0.22625   4.00000  -2.90500

2.00000  -0.22625   4.00000  -2.90500

>> pkg load odepkg

>> [T, result] = ode45(@deriv_fun, [0,0.5], [0,0,4.0,2.0])

Time interval
Initial values of
x, y, vx, vy at t=0

User-defined func. of dp/dt

Results:

>> plot(result(:,1), result(:,2))

Plot of a trajectory of the metal ball

Only in older Octave versions



Quadrature rules and Runge-Kutta method*

• Definite integral is numerically computed by several approximation 
methods, e.g., the trapezoidal rule or Simpson rule

• The core of numerical solutoins to ODEs is numerical integration

• 2nd order Runge-Kutta method
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The trapezoidal rule Simpson rule

𝑡𝑛

𝑥𝑛

𝑥𝑛+1

𝑡𝑛 +
∆𝑡

2

𝑡

𝑥

𝑡𝑛 + ∆𝑡

𝑥𝑛 + 𝑘1

𝑘1

∆𝑡

𝑘2

𝑥𝑛 + 𝑘2



Exercise 6.1

Consider a mass m, to which a spring with spring constant k and a 
damper with damping constant c are attached as shown in the diagram. 
Assume that the mass can move only in the x. The equation of motion is 
given by

When setting c to ((your birth month) modulo 3)+1) and k to ((your birth 
day) modulo 7)+1), plot x(t) with m=1, x(0)=1 and dx/dt(0)=0.

E.g., If your birth month and date is 13th August, then c=3 and k=7
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