
13. Machine learning II

• Neural networks (deep learning)

• Standardization of data

• Training neural networks

63

Neural networks: Units and activation functions

• A unit receives multiple input signals as their weighted sum,
passes it to a nonlinear function, and outputs a signal

• Simplified math model of a neuron

• The func. f is called activation function

• Various analytic funcs are used

64

Neural networks: single layer net

• Construct a layer of multiple units

• Denoting inputs to this layer by a vector x and outputs by z, we
can express the computation at this layer as

or

65

Neural networks: multi-layer net

• Stack of multiple single-layer nets = a multi-layer net also
known as a feed-forward network

Propagation from
lth to (l+1)th layer

Lth (output) layer

1st (input) layer

66

>> train_lbl(1:5)'

ans =

5 0 4 1 9

>> test_lbl(1:5)'

ans =

7 2 1 0 4

>> A=eye(10,10);

>> train_d=A(train_lbl+1,:);

>> test_d=A(test_lbl+1,:);

Neural networks: Output layer and loss

• We give the output layer the same number of units as classes and
regard their output as probability (or likelihood) of the classes; kth

output = probability of kth class

• Sigmoid func. or softmax func. are employed for activation func. of the
output layer

• Classes are encoded by a vector d of length K; if the class is k, then kth

element is 1 and all other elements are 0 (called one-hot/one-of-K)

• You can generate one-hot vectors for

10-class MNIST data by the following

procedure:

• We assume here that train_lbl & test_lbl store the label data of MNIST from CAPS12 lecture.
• Type these commands after loading the data onto these variables; see p.70 for details. 67

Training a feed-forward network

• We are given a set of samples; each sample is a pair of an input x and
its target d (one-hot vector of the true class of the input)

• Using this sample set, we want to train the neural net, where the goal is
to make the output y for x as close to d as possible

• Thus, the problem becomes a minimization of the loss:

……… … …

↔

Loss
(difference between

y and d)

Weights
of layers

68

Software library

• In this course, we use the following library for MATLAB/Octave

• https://github.com/rasmusbergpalm/DeepLearnToolbox

• The author declares the software is outdated and no longer
maintained; although better software such as tensorflow and torch
is available for deeplearning, they are not compact for the purpose
of this course;

• Download “DeepLearnToolbox.zip” from Google Classroom
material and extract into “DeepLearnToolbox” folder.

• Add necessary paths to Octave as follows:

69

>> addpath(‘DeepLearnToolbox/NN’)

>> addpath(‘DeepLearnToolbox/util‘)

https://github.com/rasmusbergpalm/DeepLearnToolbox

Problem: MNIST handwritten digit recognition

• To train and test SVM, we used only a portion of 10,000 samples
belonging to t10k-* files from CAPS12 lecture.

• Here we use 60,000 samples for training NNs and 10,000 for testing
them

• To load all the data, type as follows:

70

>> fid=fopen(‘t10k-images-idx3-ubyte‘,‘r‘,‘b‘);

>> fread(fid,4,‘int32‘)

>> test_img=fread(fid,[28*28,10000],‘uint8‘);

>> test_img=test_img‘;

>> fclose(fid);

>> fid=fopen(‘t10k-labels-idx1-ubyte‘,‘r‘,‘b‘);

>> fread(fid,2,‘int32‘)

>> test_lbl=fread(fid,10000,‘uint8‘);

>> fclose(fid);

>> fid=fopen(‘train-images-idx3-ubyte‘,‘r‘,‘b‘);

>> fread(fid,4,‘int32‘)

>> train_img=fread(fid,[28*28,60000],‘uint8‘);

>> train_img=train_img‘;

>> fclose(fid);

>> fid=fopen(‘train-labels-idx1-ubyte‘,‘r‘,‘b‘);

>> fread(fid,2,‘int32‘)

>> train_lbl=fread(fid,60000,‘uint8‘);

>> fclose(fid);

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Standardization of data (1/2)

• Data ‘in the wild’ often distribute in the data space in an unfavorable
manner; applying a linear transform to make them distribute uniformly
usually helps training NNs and SVMs

• A transformation making the mean 0 and the variance 1 will work well

nth sample:

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

mean variance

standardization
(normalization)

whitening
(we don’t consider here)

71

Standardization of data (2/2)

• First, compute the mean μ and standard deviation σ of training
samples x’s

• Second, subtract μ from each training sample and divide it by σ

• Note that μ and σ are vectors of the same length as x’s

• Third, apply the same transformation with the same μ and σ to

• Not allowed to use the mean and std. dev. of test samples; we may
use only information from training samples; explain why?

>> mu = mean(train_img);

>> sigma = max(std(train_img), eps);

>> test_img = (test_img – mu)./sigma;

>> train_img = (train_img – mu)./sigma;
element-wise division

72

Experiments

• Design a two-layer NN with 784(=28x28) elements in the input, 100
units in the intermediate layer, and 10 units in the output layer

• Train the net using the training samples

• Evaluate performance of the trained net using test samples

73

>> nn = nnsetup([784 100 10]);

784 elements

100 units
10 units

>> pred = nnpredict(nn, test_img);

>> pred(1:10)‘

ans =

8 3 2 1 5 2 5 10 5 10

>> test_lbl(1:10)‘

ans =

7 2 1 0 4 1 4 9 5 9

>> sum(pred-1==test_lbl)/10000*100

ans = 92.900

>> opts.numepochs = 1;

>> opts.batchsize = 100;

>> [nn, L] = nntrain(nn, train_img, train_d, opts);

Number of times the net sees each sample during training

The weights are updated once for this number of samples

labels range from 1-10 in nnpredict

labels range from 0-9 in orig. data

See p.67

Exercises 13.1

• You can run nntrain repeatedly; it will update the net incrementally
using the same training samples

• To perform this, just type:

• If you want to reset the training, initialize the net as follows

1. Repeat training for, say, 10 steps, from initialization and evaluate
performance of the net at each step; plot ‘training counts’-vs-
’accuracy’

2. Design a three-layer NN, for instance, having two intermediate layers
with 30 units each, and train it; and evaluate the difference in
performance from the earlier two-layer net

3. Try increasing the number of layers in NN, and varying the number of
units in the intermediate layers a few more times. How do their
properties change?

74

>> [nn, L] = nntrain(nn, train_img, train_d, opts);

>> nn = nnsetup([784 100 10]);

