13. Machine learning II

* Neural networks (deep learning)
« Standardization of data
« Training neural networks

Neural networks: Units and activation functions

« A unit receives multiple input signals as their weighted sum,
passes it to a nonlinear function, and outputs a signal

- Simplified math model of a neuron 21
w1
U = W1T1 + Woxg + w3T3 + waTy + b
Lo W2
2= f(u)
« The func. fis called activation function T3 W3
« Various analytic funcs are used ”
4

64

Neural networks: single layer net

« Construct a layer of multiple units

« Denoting inputs to this layer by a vector x and outputs by z, we
can express the computation at this layer as

u=Wx-+Db
or

wip vt Wig f(ur)
-] f(u) -
wyr e Wyr f(ur)

Neural networks: multi-layer net

« Stack of multiple single-layer nets = a multi-layer net also
known as a feed-forward network

1st (input) layer x = zY

Propagation from ultt) = Witz h 4 pl+h)

Ith to (I+1)% layer 71 — f(u(l+1))

Lth (output) layer y = 7

(1) (2) (3)
< 2 Z 27 = 4®

Neural networks: Output layer and loss

« We give the output layer the same number of units as classes and
regard their output as probability (or likelihood) of the classes; kth
output = probability of kt" class

« Sigmoid func. or softmax func. are employed for activation func. of the
output layer

- Classes are encoded by a vector d of length K; if the class is k, then kth
element is 1 and all other elements are 0 (called one-hot/one-of-K)

« You can generate one-hot vectors for
10-class MNIST data by the following d= [dla da,. .., dK]
procedure:

>> train 1bl(1:5)" (L)

ans = p(ck|x) = Yk = 2
5 0 4 1 9 _

>> test 1lbl1(1:5)" S — >
ansei — () - O+— U
7 2 1 0 4 O ¥2
>> A=eye (10,10); x O U3
>> train d=A(train 1bl+1,:); 2 (U L, e %
>> test d=A(test 1bl+1,:); : :
- o O— Yo

« We assume here that train 1bl & test 1bl store the label data of MNIST from CAPS12 lecture.

- Type these commands after loading the data onto these variables; see p.70 for details.

Training a feed-forward network

« We are given a set of samples; each sample is a pair of an input x and
its target d (one-hot vector of the true class of the input)

S ={(x1,d1),...,(xn,dn)}

« Using this sample set, we want to train the neural net, where the goal is
to make the output y for x as close to d as possible

\ \ H
/ “ . “‘V

4& O\ ‘§|D<¥

V V V \'y
Loss

Weights W p©@) W) p) E(w.S
"57 5 ,. o . 3 s ff
of layers {() ()} ference Seatme Zr)] (’)

> Y < d,

« Thus, the problem becomes a minimization of the loss:

min F(w,S)

W

Software library

« In this course, we use the following library for MATLAB/Octave
« https://qgithub.com/rasmusbergpalm/DeeplLearnToolbox

« The author declares the software is outdated and no longer
maintained; although better software such as tensorflow and torch
is available for deeplearning, they are not compact for the purpose
of this course;

« Download “DeeplLearnToolbox.zip” from Google Classroom
material and extract into “DeeplLearnToolbox” folder.

« Add necessary paths to Octave as follows:

>> addpath (‘DeepLearnToolbox/NN’)
>> addpath (‘DeeplLearnToolbox/util?)

https://github.com/rasmusbergpalm/DeepLearnToolbox

Problem: MNIST handwritten digit recognition

« To train and test SVM, we used only a portion of 10,000 samples
belonging to t10k-* files from CAPS12 lecture.

« Here we use 60,000 samples for training NNs and 10,000 for testing
them

« To load all the data, type as follows:

>> fid=fopen (‘tl0k-images-idx3-ubyte?', ‘r', ‘b');
>> fread(fid, 4, ‘int32"')

>> test img=fread(fid, [28*28,10000], ‘uint8?');
>> test img=test img?';

>> fclose (£id) ;

>> fid=fopen(‘tl0k-labels-idxl-ubyte®', ‘r', ‘b');
>> fread(fid, 2, Yint32"')

>> test lbl=fread(fid, 10000, ‘uint8?');

>> fclose (fid) ;

>> fid=fopen (‘train-images-idx3-ubyte', ‘r', ‘b');
>> fread(fid, 4, Yint32"Y')

>> train img=fread(fid, [28*28,60000], ‘uint8?') ;
>> train img=train img‘;

>> fclose (£id) ;

>> fid=fopen (‘train-labels-idxl-ubyte?', ‘r', ‘b?');
>> fread(fid, 2, Yint32")

>> train lbl=fread(fid, 60000, ‘uint8?);

>> fclose (fid) ;

Standardization of data (1/2)

« Data ‘in the wild’ often distribute in the data space in an unfavorable
manner; applying a linear transform to make them distribute uniformly
usually helps training NNs and SVMs

« A transformation making the mean 0 and the variance 1 will work well

L T
nth sample: X, = [Tn1, Tno,y-- -, Tni]
_ N N
Lng — Ly — 1 B
T 4 =Y /N o= ~ 2 (@i — 3)?
mean variance
3 3r 3
1t 1 k.fhﬁ‘ | 1 . .
: B
-2 ...;':. 2 ", -2}
3 -3r 3
3 2 1 0 1 2 3 3 2 1 0 1 2 3 3 2 1 0 1 2 3
standardization whitening

(normalization) (we don’t consider here)

Standardization of data (2/2)

« First, compute the mean M and standard deviation o of training
samples X’s

>> mu = mean (train img);
>> sigma = max(std(train img), eps);

« Second, subtract p from each training sample and divide it by ©
* Note that g and o are vectors of the same length as x's

>> train img = (train img - mu)./sigma;

N — element-wise division

« Third, apply the same transformation with the same g and o to

* Not allowed to use the mean and std. dev. of test samples; we may
use only information from training samples; explain why?

>> test img = (test img - mu)./sigma;

Experiments

« Design a two-layer NN with 784(=28x28) elements in the input, 100

units in the intermediate layer, and 10 units in the output layer

>> nn = nnsetup([784 100 10]);

 Train the net using the training samples

>> opts.numepochs = 1;
>> opts.batchsize = 100;

>> [nn, L] = nntrain(nn, train img, train d, opts);

\ See p.67

« Evaluate performance of the trained net using test samples

>> pred = nnpredict(nn, test img);

>> pred(1:10) "

S — -— labels range from 1-10 in nnpredict
8 3 2 1 5 2 5 10 5 10

>> test 1bl1(1:10)"
ans = — labels range from 0-9 in orig. data

7 2 1 0 4 1 4 9 5 9
>> sum(pred-l==test 1bl)/10000*100
ans = 92.900

-— Number of times the net sees each sample during training

— 100 units
784 elements

10 units

«— The weights are updated once for this number of samples

73

Exercises 13.1

« You can run nntrain repeatedly; it will update the net incrementally
using the same training samples

« To perform this, just type:

>> [nn, L] = nntrain(nn, train img, train d, opts);

« If you want to reset the training, initialize the net as follows

>> nn = nnsetup([784 100 1017);

1. Repeat training for, say, 10 steps, from initialization and evaluate
performance of the net at each step; plot ‘training counts’-vs-
‘accuracy’

2. Design a three-layer NN, for instance, having two intermediate layers
with 30 units each, and train it; and evaluate the difference in
performance from the earlier two-layer net

3. Try increasing the number of layers in NN, and varying the number of
units in the intermediate layers a few more times. How do their
properties change?

