9. Statistics I

- Mean and variance
- Expected value
- Models of probability events

Statistic(s)

- Consider a set of distributed data (values)
- E.g., age of first marriage and average salary of Japanese
- If we use only a single value to describe the data, we may choose
- mean, median (the value separating the higher half of the data from the lower half), mode (the value that appears most often)
- If we can use one more value, we may want to represent dispersion of the data
- variance $=$ the width of dispersion of data

http://www.mhlw.go.jp/shingi/0112/s1211-3a.html

http://www.mhlw.go.jp/toukei/saikin/hw/k-tyosa/k-tyosa10/2-2.html

Computation of statistics

- mean: mean

$$
\mu=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

- median : median

```
>> X = randn(10000,1);
```

>> X = randn(10000,1);
>> mean(X)
>> mean(X)
ans = 0.0034172
ans = 0.0034172
>> var(X)
>> var(X)
ans = 1.0268
ans = 1.0268
>> X = rand(10000,1);
>> X = rand(10000,1);
>> mean(X)
>> mean(X)
ans = 0.50384
ans = 0.50384
>> var(X)
>> var(X)
ans = 0.083720

```
ans = 0.083720
```

- variance : var
- called unbiased sample variance

$$
V=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}
$$

- standard deviation : std

```
                                    \sigma=\sqrt{}{V}
>> X = randn(10000,1);
>> std(X)
ans = 0.99576
>> sqrt(var(X))
ans = 0.99576
>> median(X)
ans = -0.0051996
```


Two different variances*

- Population variance
- Defined for a set of N data: $V=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}$
- Sample variance
- Defined with N data that are samples chosen from a complete set of data
- E.g., The case when we consider height of Japanese using randomly chosen N (say, $=1000$) persons
- The definition in the last page gives an estimate of the true population variance of the complete set of data
- If it is divided by N (not by $N-1$), then its expectation does not coincide with the true value (i.e., population variance of height of all Japanese)

Consider estimating the true variance ($\sigma^{2}=1.0$) of standard normal distribution using ten samples randomly drawn from it; this is repeated for 100,000 trials and the average of the 100,000 estimates are evaluated

When Eq (*) (divided by N) is used:

```
>> X = randn(10,100000);
```

>> X = randn(10,100000);
>> m = mean(X);
>> m = mean(X);
>> Y = mean((X - ones (10,1)*m).^2);
>> Y = mean((X - ones (10,1)*m).^2);
>> mean(Y)
>> mean(Y)
ans=0.90047

```
ans=0.90047
```

When sample variance is used:

```
>> X = randn (10,100000);
>> mean(var(X))
ans=1.0005
```


Expected value (of a random variable)

- Expected value of a (discrete) random variable X is defined to be

$$
E[X]=\sum_{i=1}^{\infty} x_{i} P\left(X=x_{i}\right)
$$

- Consider a game in which you roll a six sided die and you win (the number shown on the face of the die) $\times 1,000 \mathrm{JPY}$; how much money can you get paid for this game?
- The expected value of the income gives an answer

$$
E[X]=1000 \times \frac{1}{6}+2000 \times \frac{1}{6}+3000 \times \frac{1}{6}+4000 \times \frac{1}{6}+5000 \times \frac{1}{6}+6000 \times \frac{1}{6}=3500
$$

- You can evaluate it approximately using Monte Carlo simulation

$$
E[X] \approx \frac{1}{N} \sum_{n=1}^{N} X_{n}
$$

```
>> X=rand(10000,1);
>> Y=floor(X*6)+1;
>> mean(Y*1000)
ans=3445.2
```


Model of probability events: Poisson distribution

- Consider events that will happen λ times in a fixed interval of time in an average sense
- E.g., E-mails received in thirty minutes
- Probability that k events occurs in this time interval is given by

$$
P(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

- Expected value of X : $E[X]=\lambda$
- This is called Poisson distribution

- Random numbers distributed with a Poisson distribution are generated by randp (l, m, n), where $I=\lambda$ and $m \times n$ is the size of matrix

```
>> randp (4,1,10)
ans =
    7
>> hist(randp(4,1,10000))
```


Model of probability events: binomial distribution

- Consider tossing a coin n times; let X be the counts (out of n) for which we see the head side
- We assume the outcome of each tossing is independent of earlier ones
- Let p be the probability of the head; the probability of $X=k$ is given by

$$
\begin{aligned}
P[X=k]= & \binom{n}{k} p^{k}(1-p)^{n-k} \quad \text { for } k=0,1,2, \ldots, n \\
& \left(\binom{n}{k}=\frac{n \times(n-1) \times \cdots \times(n-k+1)}{k \times(k-1) \times \cdots \times 1} \longrightarrow \text { nchoosek (n, k) }\right)
\end{aligned}
$$

- Expected value of X : $E[X]=n p$
- This is called binomial distribution and denoted by $B(n, p)$
X 's distributed with $B(10,0.4)$:

```
>> X=rand (1,10)<0.4
ans =
    0}
>> sum(X)
ans = 5
```

Average of $10,000 X^{\prime}$ s:

```
>> Y=sum(rand (10,10000)<0.4);
>> mean(Y)
ans = 4.0098
    E[X]=np
```


Example use of binomial distribution

- Consider predicting a card randomly chosen from the five cards on the right when they are face down; when you do this prediction ten times, six of them are correct
- Can you declare that you are a psychic?
- Let's calculate the probability that six out of ten are correct
- Suppose you are not a psychic; then it will be completely random whether or not you can make a correct prediction at each trial; its probability is a constant $p=1 / 5=0.2$
- The number X of correct predictions will distribute with $B(10, p)$
- Thus, $p(X=k)$ for $k=1,2,3, \cdots$ is calculated as follows:

Exercise 9.1

- A, B, C and D are the last 4 digits from your student number (see Excercise 4.1)
- In an area of a country, it is known that earthquakes occur $0.7^{*}(A+1)$ times in $B+1$ days in an average sense since the dawn of the history
- However, there were $10+C+D$ earthquakes in the last four weeks
- Calculate the probability of $10+C+D$ and more earthquakes occurring in four consecutive weeks

