
12. Machine learning I

• Regression

• Overfitting

• Classification

• Example: Handwritten digit recognition

• Support vector machines (SVMs)

48

Regression

• Suppose we are given N pairs of a vector x and a scalar d

• We wish to predict d for a new input x
• x, called an independent variable, is observation used for predicting

• d, called a dependent variable, is the target, or the desired value to predict

• Toward this goal, we consider a function that approximately satisfies

• You can use any arbitrary (analytical) function for y(x)

Fitting polynomial functions

• Consider fitting a n-order polynomial func., instead of a linear func.

considered earlier

• polyfit performs this

• E.g., You can fit a linear func. as follows, instead of using pinv

• E.g., 3rd-order polynomial function

50

>> p=pinv(X)*y;

>> p=polyfit(x,y,1);

>> p=polyfit(x,y,3)

ans =

-2.2455 3.8778 -1.3517 0.4603

Fitting polynomial functions: an example

51

>> x=rand(10,1);

>> p0=[1.0,2.0,3.0,4.0];

>> y=p0(1)*x.^3+p0(2)*x.^2+p0(3)*x+p0(4)+0.2*randn(10,1);

>> plot(x,y,'o')

>>

>> hold on

>> xx=0:0.01:1;

>> yy=p0(1)*xx.^3+p0(2)*xx.^2+p0(3)*xx+p0(4);

>> plot(xx,yy)

>>

>> p=polyfit(x,y,3);

>> plot(xx,polyval(p,xx))

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3

4

5

6

7

8

9

10

 (0)

 (2)

 (2)

 (1)

 (1)

 (0)

Data are synthesized
here for the purpose of
explanation

Overfitting (also called overtraining)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

52

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

• If you fit 1st, 3rd, 5th, and 6th-order funcs to seven data points…

• Models with excessively large degrees of freedom can explain data
perfectly even including their noises, which is totally meaningless!

1st order (a line) 3rd-order

5th-order 6th-order

Classification

• Consider a variable x belonging to one of K classes

• Classification = assigning an input x with one of K class labels

• E.g., x is an image of a digit; we wish to answer what digit it is

• Supposing that N pairs of input x and its true class label d are
given

we wish to predict which class a new input x belongs to

0,1,2,3,4,5,6,7,8,9

Example: Handwritten digit recognition

• We use MNIST, a famous dataset of handwritten digit recognition

http://yann.lecun.com/exdb/mnist/

• Download and unzip the following file from the course page

mnist-data.zip

• We use the following two files today:

t10k-images-idx3-ubyte & t10k-labels-idx1-ubyte

• We use support vector machines (SVMs) for classification

• For this purpose, we use liblinear, a software library of SVM

54

Installing liblinear, a software library for SVM

• liblinear

• One of the most popular libraries in machine learning created by
Machine Learning Group at National Taiwan University

• Download files from the URL:

• https://www.csie.ntu.edu.tw/~cjlin/liblinear

• Extract the downloaded file and change the current directory to
liblinear-x.xx/matlab

• cd /Users/xxxx/Octave/liblinear-2.11/matlab

• Run make.m

• >> make

• Add the folder to search paths

• >> addpath(‘/Users/xxxx/Octave/liblinear-2.11/matlab’)

55

https://www.csie.ntu.edu.tw/~cjlin/liblinear

Support vector machines (SVMs) (1/2)*

• Consider two-class classification：

• A set of samples are given：

• We employ the following method for classification:

• w, called weights, is a parameter to be determined

• Consider determining w as follows:
• Known as a hard-margin SVM

where

Minimize

Support vector machines (SVMs) (2/2)*

• We consider two parallel planes separating data points correctly into
two corresponding classes that have the maximum distance

• For simplicity we assume here that the data points can be separated by a
plane (called linearly separable)

• We then choose the parallel plane in the exact middle of the two parallel
plane; we use its parameters w0 and w

• Why do we do this? It will be safe to choose the plane having the
maximum distances to the nearest data points for the purpose of classifying
new inputs x’s correctly

Minimize

&

Classification of multiple classes*

• Two-class classifier is trained for each class to distinguish it from
the others

• Called the one-versus-the-rest classifier

1. kth model yk(x) is trained to classify class k and other classes

2. Regarding the output of each model as score of the model, we
classify an input sample to the class with the largest score

TVsChairs

Tables Sofas

• Loading images to Octave:
• File ‘test-images-idx3-ubyte’ contains 10,000 images of 28x28 pixels

• Skip the first four integers (32bits) and load the remaining numerical data
into a variable named data

• To display images, first reshape the image data into a tensor of appropriate
size and use imshow(matrix, [brightness_min, brightness_max])

• Loading labels to Octave:
• File ‘test-labels-idx1-ubyte’ contains labels of the images in the same order

• Skip the first two integers (32bits) and load the remaining integers into a
variable named label

Reading data from MNIST files

59

>> fid=fopen(‘t10k-images-idx3-ubyte‘,‘r‘,‘b‘);

>> fread(fid,4,‘int32‘)

>> data=fread(fid,[28*28,10000],‘uint8‘);

>> fclose(fid);

>> img=reshape(data,28,28,10000);

>> imshow(img(:,:,1)‘,[0,255])

>> imshow(img(:,:,100)‘,[0,255])

>> fid=fopen(‘t10k-labels-idx1-ubyte‘,‘r‘,‘b‘);

>> fread(fid,2,‘int32‘)

>> label=fread(fid,10000,‘uint8‘); Check the contents of this variable

Training and testing a classifier

• Train a classifier using, say, 5,000 samples (images) from the
data

• Train a model (SVM) using samples with indices 1,…,5000:

• Evaluate the performance of the classifier using the remaining
samples

• Test the model using samples with indices 5001,…,6000:

60

>> tr_label = label(1:5000);

>> tr_data = data(:,1:5000);

>> model = train(tr_label,sparse(tr_data)‘);

...

Objective value = -0.081903

nSV = 910

>> te_label = label(5001:6000);

>> te_data = data(:,5001:6000);

>> pred_label = predict(te_label,sparse(te_data)‘,model)

Accuracy = 84.6% (846/1000)

pred_label =

2

3

...

Status of training, which you can
ignore (as long as the training
went well)

Classification accuracy for the input
1,000 samples is shown

Predicted labels for the 1,000 samples; note that the numbers do
not correspond to the true digits; these numbers correspond to
the indices of model.Label, which stores the true labels of digits

Visualization of weights*

• predict performs the following computation

• Visualize the trained weights as images

• Can you tell where in the image the model looks at to classify each
digit?

61

>> for i=1:10,model.w(i,:)*reshape(te_data(:,4),28*28,1)+model.bias,end
ans = -5.3081
...
...
ans = -17.245
ans = 2.5717
...

>> te_label(4)
ans = 6
>> model.Label
ans =

5
0
4
1
9
2
3
6
7
8

>> figure
>> for i=1:10,subplot(2,5,i),imshow(reshape(model.w(i,:),28,28),[min(model.w(i,:)),max(model.w(i,:))]),end

5 0 4 1 9

2 3 6 7 8

The order of weights is specified
by model.Label

Exercise 12.1 (Make the model recognize your handwritten digit)

• Make two hand-written images; one can be recognized correctly by your
trained model, and another is which cannot be recognized correctly.

• You can make hand-written digit images in paint tool.

• Load your image and try your SVM model.

62

28 pixels

2
8
 p

ix
e
ls

Black background and
white foreground
in “png” format

>> sample = imread(‘a_number_I_wrote.png‘);

>> sample = mean(sample,3);

>> predict([2], sparse(reshape(sample‘,1,28*28)), model)

Accuracy = 100% (1/1)

ans = 2

Convert your image into grayscale if it is a color image

True label

Predicted label; this is correct!

Hint：How to test your png file on your trained model

For assignment, please attach
your images in addition to
script and PDF.

