# 10. Matrices and linear algebra II

- Eigenvectors and eigenvalues
- Singular value decomposition
- Rank of a matrix
- Low-rank approximation of matrices

### Eigenvalues and eigenvectors

- [V, D] = eig (A): calculates eigenvectors and eigenvalues of a square matrix
  - Eigenvalues are stored in ascending order in a diagonal matrix

$$\mathbf{A}\mathbf{v}_{i} = d_{i}\mathbf{v}_{i} \qquad \qquad \mathbf{A}\mathbf{V} = \mathbf{V}\mathbf{D}$$

$$\overset{\checkmark}{\mathbf{v}} = \begin{bmatrix} \mathbf{v}_{1} \ \mathbf{v}_{2} \ \cdots \ \mathbf{v}_{n} \end{bmatrix} \qquad \mathbf{D} = \begin{bmatrix} d_{1} \\ d_{2} \\ & \ddots \\ & & d_{n} \end{bmatrix}$$
eigenvector eigenvalue

```
>> A=randn(3,3);
>> [V, D]=eig(A)
V =
   0.52988 + 0.00000i -0.05375 - 0.34548i -0.05375 + 0.34548i
   0.68932 + 0.00000i 0.84473 + 0.00000i 0.84473 - 0.00000i
   0.49404 + 0.00000i 0.12431 + 0.38565i 0.12431 - 0.38565i
D =
Diagonal Matrix
   0.04533 + 0.00000i
                                         0
                                                              0
                      2.09047 + 1.25277i
                                                              \cap
                    0
                                            2.09047 - 1.25277i
                    0
                                         0
>> A*V-V*D
ans =
  1.6306e - 16 + 0.0000e + 00i - 1.1102e - 15 - 2.2204e - 15i - 1.1102e - 15 + 2.2204e - 15i
  -1.5959e-16 + 0.0000e+00i 0.0000e+00 + 4.4409e-16i 0.0000e+00 - 4.4409e-16i
  -2.6368e-16 + 0.0000e+00i -1.1102e-16 + 3.3307e-16i -1.1102e-16 - 3.3307e-16i
```

## Eigenvectors/values of symmetric matrices

- Symmetric matrices always have *real* eigenvectors/values
  - Nonsymmetric matrices have complex eigenvectors/values in general as in the last slide
  - Many matrices we encounter in engineering will be symmetric
  - Eigenvectors of symmetric matrices are orthogonal, i.e.,  $\mathbf{V}^{\top}\mathbf{V} = \mathbf{V}\mathbf{V}^{\top} = \mathbf{I}$
  - The symmetric matrix is 'diagonalized' by V as  $\mathbf{V}^{\top}\mathbf{A}\mathbf{V} = \mathbf{D}$

```
>> X = randn(3, 3);
                                             >> A*V-V*D
>> A=X'*X;
                                             ans =
>> [V,D]=eig(A)
V =
              0.267639
                           0.080159
   0.960179
  -0.226697 0.914040
                           -0.336363
  -0.163292
               0.304796
                           0.938315
                                             >> V'*A*V
                                             ans =
D =
Diagonal Matrix
   0.015584
                        \left( \right)
                                    0
              1.752624
           0
                                     \cap
                            6.254892
           \cap
                        \left( \right)
```

```
>> A*V-V*D
ans =
    1.2143e-17   -2.7756e-16    3.3307e-16
    9.1507e-17    0.0000e+00    -4.4409e-16
    -1.5179e-16    0.0000e+00    0.0000e+00
>> V`*A*V
ans =
    1.5584e-02    4.2718e-17   -1.7391e-16
    -1.3878e-17    1.7526e+00    2.2204e-16
    -2.2204e-16    4.4409e-16    6.2549e+00
```

## Singular value decomposition of matrices (1/2)

 Any m×n real matrix can be decomposed into a product of orthogonal matrices U and V and a diagonal matrix W as follows:



 $\mathbf{U}^{\top}\mathbf{U} = \mathbf{I}$   $\mathbf{V}^{\top}\mathbf{V} = \mathbf{V}\mathbf{V}^{\top} = \mathbf{I}$ 

• Remark: The decomposition is *unique* when we fix the order of the singular values (say, in descending order)

# Singular value decomposition of matrices (2/2)

- svd: calculates singular value decomposition
  - Singular value decomposition is often abbreviated as SVD



```
>> norm(U*W*V'-X)
ans = 1.5822e-15
>> norm(U'*U-eye(3))
ans = 6.7963e-16
>> norm(V'*V-eye(3))
ans = 2.3629e-16
```





#### Other options of svd

→Zero values are not eliminated

## Relation between SVD and eigenproblem

 Column vectors of V of SVD of X coincides with eigenvecotrs of A=X'X

$$\mathbf{A} = \mathbf{X}^{\top} \mathbf{X}$$
  
=  $(\mathbf{U} \mathbf{W} \mathbf{V}^{\top})^{\top} (\mathbf{U} \mathbf{W} \mathbf{V}^{\top})$   
=  $\mathbf{V} \mathbf{W}^{\top} \mathbf{U}^{\top} \mathbf{U} \mathbf{W} \mathbf{V}^{\top}$   
=  $\mathbf{V} \mathbf{W}^{2} \mathbf{V}^{\top}$ 

 Singular values of X are equal to the square roots of eigenvalues of A=X'X



| <pre>&gt;&gt; X=randn(10,3); &gt;&gt; [V1,D]=eig(X`*X); &gt;&gt; [U,W,V2]=svd(X, "econ") &gt;&gt; V1 V1 =</pre> |                                 |                                  |  |  |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------|--|--|
| -0.69324<br>0.14611<br>0.70574                                                                                  | -0.61974<br>0.37901<br>-0.68722 | -0.36789<br>-0.91379<br>-0.17219 |  |  |
| >> V2<br>V2 =<br>0.36789<br>0.91379<br>0.17219                                                                  | 0.61974<br>-0.37901<br>0.68722  | 0.69324<br>-0.14611<br>-0.70574  |  |  |



# Properties of SVD

 Pseudo inverse of X can be written using its SVD as

 $\mathbf{X} = \mathbf{U}\mathbf{W}\mathbf{V}^{\top}$  $\downarrow$  $\mathbf{X}^{\dagger} = \mathbf{V}\mathbf{W}^{-1}\mathbf{U}^{\top}$ 

• The number of non-zero singular values of X is called the rank of X

| >> X=randn<br>>> pinv(X)                                         | (5,3);                              |                                    |                                   |                                     |
|------------------------------------------------------------------|-------------------------------------|------------------------------------|-----------------------------------|-------------------------------------|
| ans =                                                            |                                     |                                    |                                   |                                     |
| 0.037163<br>-0.116157                                            | -0.070115<br>-0.215984              | -0.329386<br>-0.339899             | 0.373801<br>-0.014697             | -0.323277<br>-0.207555              |
| -0.066574                                                        | -0.156025                           | 0.513828                           | 0.023533                          | -0.501137                           |
| <pre>&gt;&gt; [U,W,V]=svd(X, "econ"); &gt;&gt; V*inv(W)*U'</pre> |                                     |                                    |                                   |                                     |
| // V 111V (W)                                                    | 0                                   |                                    |                                   |                                     |
| ans =                                                            |                                     |                                    |                                   |                                     |
| 0.037163<br>-0.116157<br>-0.066574                               | -0.070115<br>-0.215984<br>-0.156025 | -0.329386<br>-0.339899<br>0.513828 | 0.373801<br>-0.014697<br>0.023533 | -0.323277<br>-0.207555<br>-0.501137 |

| >> X=randn(5,2)*randn(2,4) |                          |  |  |  |  |
|----------------------------|--------------------------|--|--|--|--|
| X =                        |                          |  |  |  |  |
| -0.065735 -0.053           | 3739 1.626185 1.734253   |  |  |  |  |
| -0.022809 -0.020           | 0869 0.637444 0.672717   |  |  |  |  |
| 0.151451 0.140             | 0834 -4.307108 -4.539055 |  |  |  |  |
| 0.563733 0.153             | 3728 -3.832887 -5.067102 |  |  |  |  |
| -0.246376 -0.082           | 2560 2.181361 2.705379   |  |  |  |  |
| >> rank(X)                 |                          |  |  |  |  |
| ans = 2                    |                          |  |  |  |  |
| >> svd(X)                  |                          |  |  |  |  |
| ans =                      |                          |  |  |  |  |
| 9.9100e+00                 |                          |  |  |  |  |
| 6.0159e-01                 |                          |  |  |  |  |
| 2.4902e-16                 |                          |  |  |  |  |
| 1.6489e-17                 |                          |  |  |  |  |
|                            |                          |  |  |  |  |

# Approximation of matrices by SVD

- Consider the following problem: given a matrix A, we wish to obtain a matrix of a fixed rank r that approximates A as accurately as possible
- It can be formulated as a *constrained minimization* problem:

$$\min_{\hat{\mathbf{A}}} \|\mathbf{A} - \hat{\mathbf{A}}\|_F \quad \text{subject to} \quad \operatorname{rank}(\mathbf{A}) = r$$

• Its solution is simply given by SVD of A in the following way:



# Exercise 10.1

• We wish to predict how a person rates songs

Customers who bought this item also bought



- Some people have similar tastes about like/dislike of music
  - That said, there will be no two persons having exactly the same taste
  - This kind of problems is known as collaborative filtering
- We approximate the rating matrix by a matrix of rank=3



## Exercise 10.1

- Ratings of 20 songs are available (rating1.txt by 5 persons, rating2.txt by 15 persongs)
  - Download rating1.txt from the course page and read into  ${\tt R}\xspace$  by

>> load('rating1.txt')

- Rating is represented by an integer in the range of [1,5]
- R(2,4)=3 means person2 gave rating=3 for song4
- Suppose a new (i.e., 16<sup>th</sup>) person gives ratings for three songs
  - song1=4, song3=2, song7=3, i.e.,  $R_{16,1} = 4$ ,  $R_{16,3} = 2$ ,  $R_{16,7} = 3$
- Estimate ratings by this person for other songs
  - The following steps should be performed for each rating date (rating1.txt and rating2.txt)
  - First, find a rank-3 approximation of R, i.e., obtain 5x3 P and 3x20 S
  - Second, find  $p_{16}$  that satisfies the following equations using S:

$$R_{16,1} = \mathbf{p}_{16}^{\top} \mathbf{s}_1$$
$$R_{16,3} = \mathbf{p}_{16}^{\top} \mathbf{s}_3$$
$$R_{16,7} = \mathbf{p}_{16}^{\top} \mathbf{s}_7$$

- Finally, calculate prediction of ratings by  $R_{16,j} = \mathbf{p}_{16}^{\top} \mathbf{s}_j$
- True ratings of  $R_{16}$  are:

4 3 2 2 3 3 3 2 3 1 2 3 2 2 3 4 3 3 3 3