8. Probability theory: basics

- Random numbers
- Conditional probability
- Joint probability
- Bayes' theorem
- Marginal probability
- Posterior probability and prior probability
- Logical indexing of matrices

Random numbers

- rand (m,n) generates a $m \times n$ matrix of random numbers that are uniformly distributed on the interval $(0,1)$
※ hist creates a histogram for a given set of numbers and plot it

```
>> hist(rand(10000,1),30)
```


- randn (m,n) generates a $m \times n$ matrix of random numbers distributed according to a normal distribution with zero mean and variance 1.

```
>> hist(randn(10000,1),30)
```


Probability theory(1/4)

- Suppose a red box and a blue box containing apples and oranges as shown below

- Consider a trial of first choosing a box and then picking a fruit randomly from it
- Assume that the red box is chosen with probability 40% and the blue box is chosen with probability 60%
- Then, how can we answer questions like
- What is the probability that an apple is picked?
- When we know an apple is picked, what is the probability that the apple came from the blue box?

Probability theory(2/4)

- Probabilistic variables
- $B=$ which box is selected; $B=r$: the red box and $B=b$: the blue box
- $F=$ which fruit is selected; $F=a$: an apple and $F=0$: an orange
- Probability of selecting each box:

$$
p(B=r)=4 / 10 \quad p(B=b)=6 / 10
$$

- Conditional probability: probability of selecting an apple when the red box has been chosen
- It is just the ratio of apples (2) to the number of fruits (8) in the box

$$
p(F=a \mid B=r)=1 / 4
$$

- Similarly, we have

$$
\begin{aligned}
& p(F=o \mid B=r)=3 / 4 \\
& p(F=a \mid B=b)=3 / 4 \\
& p(F=o \mid B=b)=1 / 4
\end{aligned}
$$

Probability theory(3/4)

- Joint probability
- What is the probability of selecting the red box AND an orange
- From Bayes' theorem, it can be represented as follows:

$$
p(F=o, B=r)=p(F=o \mid B=r) p(B=r)
$$

	$B=r$	$B=b$
$F=a$	$1 / 10$	$9 / 20$
$F=0$	$3 / 10$	$3 / 20$

- By the way, if the following holds true, we say that the two probabilistic variables are independent of each other

$$
p(F=o, B=r)=p(F=o) p(B=r)
$$

Monte Carlo methods

- Let's estimate the joint probabilities by simulating the above trial using random numbers; Monte Carlo estimate of probabilities
- The following script first picks a box and then a piece of fruits randomly as is described above for, say, 10,000 trials; and counts the numbers of the cases $(B, F)=(r, a),(r, o),(b, a)$, and (b, o), respectively

```
% box_fruit.m
num_bf = zeros(2,2);
for i=1:10000
    if rand (1,1) < 0.4, % red box (40%)
        if rand (1,1) < 2.0/8, % apple
            num_bf (1,1) += 1;
        else % orange
            num_bf (2,1) += 1;
        end
    else % blue box
        if rand (1,1) < 3.0/4, % apple
            num_bf (1,2) += 1;
        else % orange
            num_bf (2,2) += 1;
        end
    end
end
```

```
>> box_fruit
>> num_bf/sum(sum(num_bf))
ans =
\[
\begin{array}{ll}
0.10090 & 0.44660 \\
0.29740 & 0.15510
\end{array}
\]
```

$$
B
$$

	$B=r$	$B=b$
$\mathrm{~F}=\mathrm{a}$	$1 / 10$	$9 / 20$
$\mathrm{~F}=0$	$3 / 10$	$3 / 20$

Logical indexing of matrices

- The same results can be obtained much more efficiently

```
>> B = rand (1,10000) < 0.4; % 1 for red box; 0 for blue box
>> Each element of B is 1 if its corresponding element of the vector
>> B (1:10) on the right hand side satisfies the inequality and 0 otherwise
ans = The boxes selected for the first 10 trials (out of 10,000)
    1
>> Frnd = rand(1,10000);
~ The set of all indices of 1 elements in B
>> F(B==1) = Frnd (B==1) < 2/8; % 1 for apple; 0 for orange
>> The set of all indices of 0 elements in B
>> F(B==0) = Frnd (B==0) < 3/4; % 1 for apple; 0 for orange
>>
>> F(1:10)
ans= The fruits selected for the first 10 trials (out of 10,000)
    0}0
>> sum(F==1&B==1)/10000
ans=0.09570
>> sum(F==1&B==0)/10000
ans=0.45430
>> sum(F==0&B==1)/10000
ans=0.29890
>> sum(F==0&B==0)/10000
red & orange
```

blue \& orange

red \& orange

```
ans=0.15110
```


Probability theory(4/4)

- What is the probability of selecting an apple in a trial?
- This kind of probabilities is called marginal probability
- Answer is $11 / 20$

$$
p(F=a)=p(F=a, B=r)+p(F=a, B=b)
$$

- We are told that the selected fruit is an orange; what is the probability that the selected box, from which the orange came, was the red box
- Answer is $2 / 3$

$$
p(B=r \mid F=o)=\frac{p(B=r, F=o)}{p(F=o)}
$$

- Probabilities like this are called posterior probabilities; because it is the probabilities obtained after we have observed F
- Probabilities like $p(B=r)$ are called prior probabilities; they are given in advance

Exercise 8.1

- Calculate a Monte Carlo estimate of $p(F=0)$ using logical indexing of matrices explained in a previous slide
- Try this code 10 times under different trial numbers ($\mathrm{i}=10,100,1000,10000$).
- Summarize the variation of probability for each trial numbers.

