4. Roots of algebraic and transcendental equations

- Roots of algebraic (polynomial) equations
- User-defined functions
- Roots of transcendental equations
- Symbolic computation

Roots of polynomial equations: roots

- To find the roots of a $2^{\text {nd }}$ order polynomial equation $x^{2}-x-2=(x-$ $2)(x+1)=0$, type as follows:

```
>> C=[1,-1,-2];
>> roots(C)
ans =
    2
    -1
```

- Roots of a $3^{\text {rd }}$ order equation $x^{3}+1=0$ are calculated as follows:

```
>> C=[1,0,0,1];
>> roots(C)
ans =
    -1.00000 + 0.00000i
    0.50000 + 0.86603i
    0.50000-0.86603i
```


User-defined functions

- You can define an arbitrary function by writing a script of the form:

```
function [y1,...,yN] = myfun(x1,...,xM)
y1 = ...
endfunction
```

- Save the following script into, say, "myfun.m"

```
#myfun.m
function y = myfun(x)
    y = x^2+\operatorname{sin}(x)-1;
endfunction
```

- You can call it as a function in the following ways:

```
>> myfun(0)
ans = -1
>> myfun(1)
ans=0.84147
```

Remark: These commands must be run in the same directory (folder) as myfun.m was saved. Or you can add the directory where myfun.m exists to Octave's load path; type "help path" for details.

Anonymous function

- You can use anonymous function, which is another way of creating a user-defined function

```
>> myfun1 = @(x) (x^2+sin(x)-1);
>> myfun1(1)
ans=0.84147
```

- An example of functions with two (and more) variables:

```
>> myfun2 = @ (x,y) (x.^ 2+y.^^2+x.* y);
>> [X,Y] = meshgrid(-10:10);
>> mesh(X,Y,myfun2 (X,Y))
```


Remark: The use of $x .^{\wedge} 2$ instead of $x^{\wedge} 2$ above makes it possible to deal with the case when x is a matrix (or a vector or even a tensor).

Roots of transcendental equation: fsolve

- To find roots of $x^{2}+\sin (x)-1=0$, type as follows:

```
>> fsolve(@(x) x^2+sin(x) -1, 1.0)
ans = 0.63673
>> fsolve(@(x) x^2+sin(x) -1, -1.0)
ans = -1.4096
```

- fsolve tries to find a root starting from given initial value
- It can fail to find any root; the success depends on the equation and the provided initial values

20.1 Solvers From https://www.gnu.org/software/octave/doc/

Octave can solve sets of nonlinear equations of the form

```
F(x)=0
```

using the function fsolve, which is based on the MINPACK subroutine hybrd. This is an iterative technique so a starting point must be provided. This also has the consequence that convergence is not guaranteed even if a solution exists.

Function File: fsolve ($f \subset n, x 0$, options)
Function File: [x, fvec, info, output, fjac] = fsolve (fcn, ...)
Solve a system of nonlinear equations defined by the function fcn.
fcn should accept a vector (array) defining the unknown variables, and return a vector of left-hand sides of the equations. Right-hand sides are defined to be zeros. In other words, this function attempts to determine a vector x such that fcn (x) gives (approximately) all zeros.
$x 0$ determines a starting guess. The shape of $x 0$ is preserved in all calls to $f c n$, but otherwise it is treated as a column vector.

Symbolic package

- Extends Octave to enable symbolic computation
- Function solve in MATLAB has not been implemented as of today
- To install symbolic package, visit https://github.com/cbm755/octsympy and follow the instruction.
- To use this package, type the following in Command Window:

```
>> pkg load symbolic
```

- To start symbolic computation, you must first declare a symbolic variable by syms

```
>> syms x
```

- A symbolic representation of a function:

```
```

>> x^2+sin(x) -1

```
```

>> x^2+sin(x) -1
ans = (sym)
ans = (sym)
2
2
x + sin(x) - 1

```
```

 x + sin(x) - 1
    ```
```


http://www.wolframalpha.com

Symbolic package: factorization

- Factorization of a polynomial: factor

```
>> syms x
> f=x^3+13* x^2-105*x+171;
>> factor(f)
ans = (sym)
    2
    (x-3)*(x+19)
```

```
>> syms x y
```



```
>> factor(f)
ans = (sym)
    2
    (x-3)*(x+2)*(y-3)
```


Symbolic package: differential

- Symbolic differential: diff

```
>> diff(x^2+sin(x)-1)
ans=(sym) 2*x + cos(x)
```

```
>> diff(exp(-x*sin(x)))
ans = (sym)
```

$$
-x^{*} \sin (x)
$$

$$
\left(-x^{\star} \cos (x)-\sin (x)\right) \star e
$$

Remark: If some special
characters such as e^{x} or $\sqrt{ }$ are not displayed properly, try the
"sympref display ascii" command to switch to ascii mode.

Symbolic package: indefinite integral

- Indefinite integral : int

```
>> int(x^2+sin(x)-1)
ans = (sym)
3
X
-- - x - cos(x)
3
```

```
>> int(sin(log(x)))
ans = (sym)
```

```
x*sin(log(x)) x*cos(log(x))
2

\section*{Exercises 4.1}
- Find all the roots to the following equation
\[
10 \cdot \sin ^{2}(A x) \cdot \exp \left(-\frac{B x}{2}\right)+0.01(C+D) x-0.3=0,(0 \leq x \leq 5)
\]
- A, B, C, D are constant value, which is identified by your student number.
- If your student number is 'C6TB1234', \(A=1, B=2, C=3\), and \(D=4\).
\[
\begin{aligned}
& \text { e.g.) C } 6 \text { T B } \underline{1} \underline{\mathbf{2}} \underline{\mathbf{3}} \underline{4}
\end{aligned}
\]
- Hint: You must specify good initial values to use fsolve. To do so, plot the function \(y=f(x)\) in the interval \([0,5]\) as follows and make guesses of possible roots.
```

>> x=0:0.01:5;
>> y=10*sin(A*x).^2.* exp(-B*x/2) + 0.01* (C+D) - 0.3;
>> y0=zeros(1,length(x));
>> plot(x,y,x,y0)

```
```

