OTHER LEARNING METHODS & RELATED TOPICS

Other learning methods & related topics

- Self-supervised learning
- Adversarial examples
- Model compression & Distillation
- Continual learning

Self-supervised learning

Basically transfer learning; we pre-train the net on a task (called proxy task) for which labels are available for free, then fine-tuning it on the target task

Self-supervised learning

Basically transfer learning; we pre-train the net on a task (called proxy task) for which labels are available for free, then fine-tuning it on the target task

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding [Devlin+18]

Adversarial examples

Szegedy+, Intriguing properties of neural networks, 2014

Easy to fool CNNs with unnoticeable perturbation (for human)

noise

recognized

Recognized as"Ostrich"

- Find small perturbation that makes the prediction wrong
 - You can specify to which class your net misclassify the input
 - Similar to optimization-based visualization

Minimize $||r||_2$ subject to:

1.
$$f(x+r) = l$$

2.
$$x + r \in [0, 1]^m$$

A simple method: Fast Gradient Sign Method

Goodfellow+, EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES, ICLR2015

Loss for the true label for x

- Perturb an image in the direction of the gradient of the loss
 - It is the perturbation maximally changing the output if the input-output relation is linear
 - DNNs are highly nonlinear but is very linear locally
- To create small perturbation, we compute the sign of their elements and multiply them with small ε

Fooling samples (or "rubbish class")

Nguyen+, Deep Neural Networks are Easily Fooled..., 2014

• Images fooling CNNs but not us; many generation methods

Images fooling a CNN recognizing MNIST

Adversarial examples: Universality

- Single noise pattern effective for many classes
 - Moosavi-Dezfooli & Fawzi, Universal adversarial perturbations, CVPR2017

- A pattern effective for a net can also be effective for others
 - Xie+, Improving Transferability of Adversarial Examples with Input Diversity, arXiv2018

Adversarial examples: Attacks in the real world

'Robust' adversarial examples [Athalye-Sutskever2017]

- Printed images
- Robust to imaging conditions

Adversarial patches

[Brown+arXiv Dec. 2017]

• A patch that forces a CNN misrecognize objects in the scene

Traffic signs: a small negligible perturbation can make a CNN misrecognize them

orange

snail

Assignment 4

- Mission: Examine the dependency of adversarial examples on networks with different architectures/initial values
 - Send your submission (all other assignments you haven't submitted so far if any) to <u>okatani@vision.is.tohoku.ac.jp</u> by Dec. 2
- Minimum requirements: https://drive.google.com/open?id=17yEw7FRhzRqoE0bPSKfNZ85hOU_yHv2Q
 - Design at least two networks (e.g., those you created in Assignment 1)
 - Let them denoted by N_A & N_B
 - Train each net from two different initial weights
 - So you have four models, N_A , N_A , N_B , & N_B
 - Generate many adversarial examples for each model and test them on all the models
 - Generate x^* 's for N_A and test them on N_A ', N_B , & N_B ' and repeat this for all the combinations
 - Report the accuracy for each pair
 - Create a table of the format shown in the following page
 - Provide your observations on the results
- Optional (5% additional score will be given if you accomplish this):
 - Try a different set of epsilons (a parameter of the adversarial attacks) and report its effects

Assignment 4

Networks for evaluation of accuracy

		N _A	N _A '	N _B	N _B '
Target networks of adversarial attacks	N _A	15%	18%	50%	•••
	N _A '		•••		
	N _B				
	N _B '				

Model compression

Bucil +, Model Compression, KDD2006 / Ba-Caruana, Do Deep Nets Really Need to be Deep?, NIPS2014

Background

- An ensemble of multiple models works better than a single model
- However, it is inefficient in computational cost and/or memory usage
- Basic idea of model compression
 - Let the ensemble model (= teacher) predict the labels of inputs
 - Train a student model using the predicted labels as targets
 - The student learns the function represented by the ensemble model

Observation

- It is generally true that a student w/ only a fewer parameters can achieve similar accuracy to the teacher
- DNNs are sometimes very large only for make their training successful

Model compression

Bucil +, Model Compression, KDD2006 / Ba-Caruana, Do Deep Nets Really Need to be Deep?, NIPS2014

• Train a large model (ensemble etc.) with a certain amount of data

- We can train another (smaller) model using more data
 - We don't need to have true labels for them

Knowledge distillation (Student-Teacher model)

- Given a network already trained on a task (=a teacher), we want to train another network (=a student)
- Method: Use the output of the teacher as supervised signals for training the student

Knowledge distillation (Student-Teacher model)

- Minimize the sum of two losses for the training of the student net
 - A standard cross-entropy loss with provided 'true' labels (1-hot vec.)
 - A cross-entropy loss with 'soft' targets, prediction from the teacher, using temperature scaling

$$L = -\lambda \sum_{j=1}^{\infty} t_j \log(y_j) - (1 - \lambda) \sum_{j=1}^{\infty} t'_j \log(y'_j)$$

$$y_i = \frac{\exp(z_i/T)}{\sum_j \exp(z_j/T)}$$

