OTHER LEARNING METHODS &
RELATED TOPICS



Other learning methods & related topics

* Self-supervised learning
* Adversarial examples

* Model compression & Distillation



Self-supervised learning

Basically transfer learning; we pre-train the net on a task (called
proxy task) for which labels are available for free, then fine-tuning it

on the target task
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Ex. 1: Inpainting (remove pdtch and then predict it)
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Ex. 2: Context (given two patches, predict their spatial relation)

({,ﬂ} , “south east”) , ({., .} " “west”) — 64 px e
O o i i R
’ Zi43| |« T T -~ Predictions
zt%}-4 - T~

Ex. 3: Colorization (predict color given intensity)

[Larsson-Maire-Shakhnarovich CVPRI17]
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Self-supervised learning

Basically transfer learning; we pre-train the net on a task (called

proxy task) for which labels are available for free, then fine-tuning it
on the target task
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BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding [Devlin+18]



Adversarial examples

Szegedy+, Intriguing properties of neural networks, 2014

Easy to fool CNNs with unnoticeable perturbation (for human)

* Find small perturbation that

makes the prediction wrong
* You can specify to which class
your net misclassify the input
* Similar to optimization-based
visualization

Minimize [|7||2 subject to:

1. flx4+7r)=1
2. x+7re[0,1™

Correctly Additive Recognized
. . 17 . n
recognized noise as” Ostrich
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A simple method: Fast Gradient Sign Method

Goodfellow+, EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES, ICLR2015
Loss for the true label for x

Perturb an image in the direction of the gradient of the loss

— It is the perturbation maximally changing the output if the input-output
relation is linear

— DNNs are highly nonlinear but is very linear locally

To create small perturbation, we compute the sign of their
elements and multiply them with small €

+.007 x =
- . x +
esign(VgJ(0,x,v))
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57.7% confidence 99.3 % confidence
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Fooling samples (or "rubbish class™)

Nguyen+, Deep Neural Networks are Easily Fooled..., 2014

* Images fooling CNNs but not us; many generation methods

Images fooling a CNN recognizing MNIST
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Adversarial examples: Universality

* Single noise pattern effective for * A pattern effective for a net can
many classes also be effective for others

—  Moosavi-Dezfooli & Fawzi, Universal adversarial —  Xiet, Improving Transferability of Adversarial Examples
perturbations, CVPR2017 with Input Diversity, arXiv2018
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Adversarial examples: Attacks in the real world

‘Robust’ adversarial examples Adversarial patches
[Athalye-Sutskever2017] [Brown+arXiv Dec.2017]

* Printed images * A patch that forces a CNN misrecognize
* Robust to imaging conditions objects in the scene

_ Classifier Input Classifier Output

-
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banana slug orange snall

Traffic signs: a small negligible perturbation can
make a CNN misrecognize them
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Assighment 4

Mission: Examine the dependency of adversarial examples on networks
with different architectures/initial values

— Send your submission (all other assignments you haven’t submitted so far if
any) to okatani@yvision.is.tohoku.ac.jp by Dec. 2

Minimum requirements: https://drive.google.com/open?id= | 7yEw7FRhzRqoEObPSKfNZ85hOU yHv2Q

— Design at least two networks (e.g., those you created in Assignment |)
* Let them denoted by N, & N;

— Train each net from two different initial weights
* So you have four models, Ny, Ny’, Ng, & Np’
— Generate many adversarial examples for each model and test them on all the
models

» Generate x*’s for Nyand test them on Ny, Nz, & Ng’and repeat this for all the combinations

— Report the accuracy for each pair
* Create a table of the format shown in the following page
* Provide your observations on the results

Optional (5% additional score will be given if you accomplish this):

— Try a different set of epsilons (a parameter of the adversarial attacks) and
report its effects
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Assighment 4

Networks for evaluation of accuracy

[ |

Npy | Ny |Ng | Ng
Ny | 15% | 18% | 50%
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networks of | Ny
adversarial Ng

attacks Ny




Model compression
Bucil"+, Model Compression, KDD2006 / Ba-Caruana, Do Deep Nets Really Need to be Deep?,NIPS2014

* Background

— An ensemble of multiple models works better than a single model

— However, it is inefficient in computational cost and/or memory usage
* Basic idea of model compression

— Let the ensemble model (= teacher) predict the labels of inputs

— Train a student model using the predicted labels as targets

— The student learns the function represented by the ensemble model
* Observation

— It is generally true that a student w/ only a fewer parameters can
achieve similar accuracy to the teacher

— DNNs are sometimes very large only for make their training successful
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Model compression

Bucil™+, Model Compression, KDD2006 / Ba-Caruana, Do Deep Nets Really Need to be Deep?,NIPS2014

* Train a large model (ensemble etc.) with a certain amount of data

\ 4

*  We can train another (smaller) model using more data

— We don’t need to have true labels for them

v
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Knowledge distillation (Student-Teacher model)

Given a network already trained on a task (=a teacher), we want to
train another network (=a student)

Method: Use the output of the teacher as supervised signals for
training the student

This is:
—> Teacher —> ‘4 w/ 38%

‘6’ w/ 60%

ﬁ R —>» | Student | —» 7 Target label

47 t
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Knowledge distillation (Student-Teacher model)

* Minimize the sum of two losses for the training of the student
net
— A standard cross-entropy loss with provided ‘true’ labels (I-hot vec.)

— A cross-entropy loss with ‘soft’ targets, prediction from the teacher,
using temperature scaling
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