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Data augmentation: basics

* The more training samples are, the better the result will be
— However, hard to get many samples with true labels
* We create ‘new’ samples from existing ones = data augmentation
* All sorts of image transformation that do not change ‘contents’
— Crop, horizontal/vertical flip

— Geometric warp: scaling, sheer, etc.
— Color changes

[Karianakis+2015]



AutoAugment

Cubuk+(Google Brain), AutoAugment: Learning Augmentation Strategies from Data, CVPR2019

* Search for the best combination of pre-defined image transformations;

some of them have parameters need to be set

— ShearX/Y, TranslateX/Y, Rotate, AutoContrast, Invert, Equalize, Solarize, Posterize,
Contrast, Color, Brightness, Sharpness, Cutout, Sample Pairing

* Reinforcement learning is employed to do this search

Original Sub-policy 1 Sub-policy 2 Sub-policy 3 ~ Sub-policy4  Sub-policy 5

el 1]
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Batch |

Batch 2

' Dataset Model Baseline Cutout [!2] AutoAugment
I

CIFAR-10 Wide-ResNet-28-10 [67] 39 3.1 2.620.1
Bitchi3 Shake-Shake (26 2x32d) [17] 3.6 3.0 2.540.1
Shake-Shake (26 2x96d) [1 7] 2.9 2.6 2.0+0.1
ShearX, 0.9, 7 ShearY, 0.7, 6 ShearX, 0. Shake-Shake (26 2x112d) [ 7] 2.8 2.6 1.9+0.1
Invert, 0.2, 3 Solarize, 0.4,8  AutoContrast, AmoebaNet-B (6,128) [14] 3.0 2.1 1.840.1
PyramidNet+ShakeDrop [65] 2.7 2.3 1.5+0.1
Reduced CIFAR-10 Wide-ResNet-28-10 [67] 18.8 16.5 14.1+0.3
Shake-Shake (26 2x96d) [ | 7] 17.1 13.4 10.0 = 0.2
CIFAR-100 Wide-ResNet-28-10 [67] 18.8 18.4 17.1£0.3
Shake-Shake (26 2x96d) [17] 17.1 16.0 14.3+0.2
PyramidNet+ShakeDrop [65] 14.0 12.2 10.7 £ 0.2
SVHN Wide-ResNet-28-10 [67] 1.5 1.3 1.1
Shake-Shake (26 2x96d) [ 7] 1.4 1.2 1.0
Reduced SVHN Wide-ResNet-28-10 [(7] 13.2 32.5 8.2

Shake-Shake (26 2x96d) [ 1 7] 12.3 24.2 5.9




Cutout

Devries+, Improved Regularization of Convolutional Neural Networks with Cutout, arXiv2017

* Mask a part of the image with randomly generated gray square

* Some relation to dropout

gl W S [

1 | 211
sl | aal

Method C10 C10+ C100 C100+
ResNet18 [3] 10.63 +£0.26 4.72+0.21 36.68 = 0.57  22.46 £ 0.31
ResNet18 + cutout 9.31+0.18 3.994+0.13 | 34.98 +0.29 21.96 +0.24
WideResNet [22] 6.971+0.22 3.874+0.08 | 26.06 & 0.22 18.8 4 0.08
WideResNet + cutout 5.544+0.08 3.084+0.16 | 23.94+0.15 18.41 +0.27
Shake-shake regularization [4] - 2.86 - 15.85
Shake-shake regularization + cutout - 2.56 £ 0.07 - 15.20 = 0.21




Mixup

Zhang+, mixup: Beyond empirical risk minimization, ICLR I8

Pick two samples w/ different labels and mix up them as follows

— A is a random number sampled from a beta distribution B(a,a)
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Mixup
Zhang+, mixup: Beyond empirical risk minimization, ICLR I8
CIFAR-10 Test Error

20

Dataset Model ERM mixup — DenseNet-190 baseline
PreAct ResNet-18 5.6 4.2 S Ym0
CIFAR-10  WideResNet-28-10 3.8 2.7 £ 10
DenseNet-BC-190 3.7 2:7 ¢
PreAct ResNet-18  25.6  21.1 ’
CIFAR-100 WideResNet-28-10 19.4 17.5 05 = B T %
DenseNet-BC-190 19.0 16.8 epoch

(b) Test error evolution for the best

(a) Test errors for the CIFAR experiments.
ERM and mixup models.

Figure 3: Test errors for ERM and mixup on the CIFAR experiments.

Label corruption  Method Test error Training error
Best Last Real Corrupted
ERM 12.7 16.6  0.05 0.28
20% ERM + dropout (p = 0.7) 8.8 104  5.26 83.55
mixup (o = 8) 5.9 6.4  2.27 86.32
mixup + dropout (o« = 4,p = 0.1) 6.2 6.2 1.92 85.02
ERM 18.8 446 0.26 0.64
50% ERM + dropout (p = 0.8) 14.1 15.5 12.71 86.98
mixup (o = 32) 11.3 12,7 5.84 85.71
mixup + dropout ( = 8,p=0.3) 10.9 10.9 7.56 87.90
ERM 36.5 739 0.62 0.83
0% ERM + dropout (p = 0.8) 309 35.1 29.84 86.37
mixup (o = 32) 25.3 30.9 18.92 85.44
mixup + dropout (o = 8,p =0.3) 24.0 24.8 19.70 87.67

Table 2: Results on the corrupted label experiments for the best models.



Assignments 2

* Mission:Apply data augmentation to MNIST digit classification and analyze
its effect

— Send your submission to okatani@vision.is.tohoku.ac.jp by Nov. 18

¢ Minimum requirements:

— Use at least 5 different augmentation methods using torchvision.transforms; you can find
the definition of affine transformation here https:/en.wikipedia.org/wiki/Affine_transformation

— Choose a network and train it on 1,000 samples with each of the augmentation
methods

— Observe your results and explain what you have found
— Don’t forget to report the augmentation methods you tested

transform = transforms.Compose ([transforms.RandomAffine((-10.0, 10.0)),

transforms.ToTensor (),
transforms.Normalize ((0.1307,), (0.3081,))1)

* Optional (5% additional score will be given if you accomplish this):
— Analyze the effect of Mixup on MNIST; a sample code is here

https://drive.google.com/open?id=16FR37YVBEOIGoiOy25wD5ypfdelaZ7nb



http://vision.is.tohoku.ac.jp
https://pytorch.org/docs/stable/torchvision/transforms.html
https://en.wikipedia.org/wiki/Affine_transformation
https://drive.google.com/open%3Fid=16FR37YVBEOIGoi0y25wD5ypf4eIaZ7nb

Transfer Learning

Formal definition: Applying knowledge gained in the process of solving
one problem to a different but related problem

Known to be highly effective for neural networks

They primary reason of using TL: train NNs on a task with a limited
amount of training data

Example: Object category recognition and scene category
recognition

CNN —>  ‘lion’

CNN —> ‘kitchen’




TL: Using layer activation as features

DeCAF [Denahue+13], CNN features off-the-shelf [Razavian+ 4]

* Using a CNN trained on one task as a feature extractor’

— Input an image into the CNN, extract activation (a vector) of one
selected layer, and use it for classifying the input

‘kitchen’

2
i H{J SVM etc.

b
Max
pooling 4096
Feature
U0 Best state of the art 00 CNN off-the-shelf §8  CNN off-the-shelf + augmentation 0 Specialized CNN |

100 -

80

60

40

From Razavian+, CNN Features off-the-shelf: an Astounding Baseline for Recognition, 2014



TL: Fine-tuning of a pretrained CNN

* A network (i.e., its weights) trained on one task is utilized for
another task by i) retraining the net on the new task

— At least the last layer needs to be renovated

* E.g., a different number of classes

— Equivalent to initializing weights by the old task = Training is stabilized;
weights are already close to the optimum for the new task

Object category recog.
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TL: Fine-tuning of a pretrained CNN

* A network (i.e., its weights) trained on one task is utilized for
another task by ii) optimizing weights of only selected layers

— Usually high layers are selected, because lower layers are expected to
have learned fundamental features, which may be shared by other tasks

— By selecting a few layers, the number of free parameters decreases =
a small amount of data may be sufficient

Object category recog.
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Transferability between tasks

Zamir+, Taskonomy: Disentangling Task Transfer Learning, CVPR2018

(I) Task-specific Modeling 1 (II) Transfer Modeling (IIT) Task Affinity (IV) Compute Taxonomy
Normals ] Reshading ‘ Layout Nonnals Reshading Normalization :

3D Keypomts 2.5D Segm

Layout

Autoencoding

AHP task affinities

: ’ 5 P.Vamshm Pts.
Binary Integer .- 2D Kcyp(mv\(. g

Program (fixy Cam. Pose

< (nonfix)
— ’ <

Normals Iipainting

—» Task-specific

2.5D sﬁngandom "Proj. |,
tﬁvature

Top 5 prediction:
atrium/public
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server room
staircase
lobbv

Scene Classification

Top 5 prediction:
patio, terrace
mobile home, man
= window screen
sliding door
rain barrel

Object Classification
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Domain shift

* Source domain and target domain

* Labeled samples are available in the
source domain; e.g., synthetic data

* Unlabeled samples in the target

domain

 Differences between the two
domains matter, even if small

Adaptation via GAN image translation

[Bousmalis et al. CVPR 2017]

Yy sy
1431489

Simulated images

[Shrivastava et al. CVPR 2017]

Synthetic

Refined

Unlabeled Real Images

Example: Internet images -> Webcam sensor

e ﬁ TR
Qx @
vy Qo =
‘ [Saenko et al. ECCV2010]
7 —4 gk =
x\u?‘lﬁ

Computer graphics (yet again) meets computer vision

[Qiu et al. ECCVw16]
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How large can the effect be!?

Geirhos+(U Tubingen), Generalisation in humans and deep neural networks, NIPS2018

Domains = noises or transformations applied on clean images

CNNs trained on one domain are not effective on others

colour 50.C 10.4| 8.1 10.2[11.2

greyscale 10.3(9.8 11.4{12.8

H contrast (5%) |47.6]13.1|14.2 19.6(39.8(17.1(10.2(28.6(29.0}46.3(51.7 r[ 45.2|134.6/37.9

?'g low-pass (std=7) 48.5'189 16.1/16.4] 11.9|16.0/ 9.8 | 6.9 (6.6 |16.0(18.6|14.4 0.5(13.8/13.5| 7.1 | 9.3

g high—pass (std=0.7) 49* 21.1|24.7|29.9(11.7] 7.7| 8.3 (10.4]|20.6]25.1|22.8{29.2|25.0 27.5|28.3|18.9|19.8

E phase noise (90°) 23.3/28.3|31.2(27.0|46.€ 4.4\ 7.4 (8.9 |30.8(31.4/30.6(31.4|43.: 41|78 (76

E rotation (90°) 6.5/43.3/39.9/31.8|40.4|37.7 8.5 8.0 |38.5|41.9/|40.3|35.2|40.1|40. 8.3(838
salt-and—pepper noise (0.2) 6.1|64)|58|79(62(6.2|6.4 62]62|6.1(63(54|58|5.7|6.2 6.2 13.6

uniform noise (0.35) |45.6]6.2 | 7.3 6.9 9.0|7.3|6.2|6.0 (10.2 11.0
é@e‘é‘v"'@v“v”’vq’wi‘%"v‘*%"&&o‘*@"@"é@&o"o‘”
0(\606 = manipulation included in training data
&

Model



Domain adaptation: adversarial training

Tzeng+, Adversarial Discriminative Domain Adaptation, CVPR2017

* Try to extract features from samples of 4 _ )
. . o . target encoder
target domain that are indistinguishable
from those of source samples o n & '.
— Discriminator: trained so as to distinguish O 33] Lﬂ < ) target
the domain from the feature 3
— Target CNN: trained so as to yield l "ﬂ % n
indistinguishable feature from inputs
* Use the target CNN + the classifier to ' -
classify samples in the target domain
N .
'Pre-training lAdversariaI Adaptation ) Testing
) 'sourceimages Y[ )
source images
+ labels
o targetimage ~o_ il ":
ig class g domain i Targ;t\:_j Sg \class
Eﬂ label target images £ s : CNN_' | 2 E_'Iabel
Q 5 Lo-=" : [ P
Target a8 T
CNN
. A A A




Domain adaptation: adversarial training

Tzeng+, Adversarial Discriminative Domain Adaptation, CVPR2017

Digits adaptation Cross-modality adaptation (NYUD)

~ EESHEDR
o EEITMEE

MNIST — USPS USPS — MNIST SVHN — MNIST
Method /17I2E3 ) IOISIR 1 IOISES /171> IREb? IMEd /7] 3]
Source only 0.752 £ 0.016 0.571 £ 0.017 0.601 £ 0.011
Gradient reversal 0.771 £ 0.018 0.730 £ 0.020 0.739 [16]
Domain confusion 0.791 £+ 0.005 0.665 4= 0.033 0.681 £ 0.003
CoGAN 0.912 £ 0.008 0.891 £ 0.008 did not converge

ADDA (Ours) 0.894 4+ 0.002 0.901 £ 0.008 0.760 = 0.018
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Semi-supervised learning

Oliver+(Google Brain), Realistic Evaluation of Semi-Supervised Learning Algorithms, arXiv2018

Problem setting: We have a small amount of labeled samples and a

large amount of unlabeled samples

— Background: Annotating (giving labels to) samples is expensive

How can we utilize the unlabeled samples?

Supervised

II-model

Entropy Minimization
Pseudo-Label

VAT

Unlabeled

Class 1

Class 2

27



Semi-supervised learning

Oliver+(Google Brain), Realistic Evaluation of Semi-Supervised Learning Algorithms, arXiv2018

* Consistency regularization ... (a)

— Apply transformations used in data augmentation to unlabeled samples
and require the predictions to be consistent before/after the trans.

* Pseudo labeling ... (b)

— Regard the prediction for unlabeled samples with high confidence to
be true prediction

* Entropy minimization ... (c)

— Require the distribution of class scores to be sharper

2
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Unsupervised data augmentation (UDA)

Xie+(Google Brain), Unsupervised Data Augmentation, arXiv19.04

* Consistency regularization with all possible data augmentation methods

z,y*€eL

[ Final Loss j mgin j = E [pe(y* | .’L')] + AJUDA(Q)'

.- Back translation

L

----- AutoAugment

Augmentations

Supervised Unsupervised
Cross-entropy Loss Consistency Loss

Po(y 1) Po(y 1)
X

"~ TE-IDF word

replacement

*

y

NS

[ Labeled Data ) [Unlaheled Data]

Since it was highly limited in terms of
budget, and the production restrictions, the
film was cheerful.

rroduction limitations, this movie limitations to make this film a really good
F
is very good. J k()no.

Due to the small dollar amount and
production limitations the ouest film is very
beautiful.

\
o/
Given the low budget and Back translation There are few budget items and production
%
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AutoAugment




Unsupervised data augmentation (UDA)
Xie+(Google Brain), Unsupervised Data Augmentation, arXiv19.04
* Currently the best semi-supervised learning method

— It surpasses the full-supervised training on SVHN

M-Model MixMatch e M-Model MixMatch
—4— Pseudo-Label -&- UDA —4— Pscudo-Label -$- UDA

5 )
50.0 VAT ==+~ Fully Supervised 20.0 VAT ==+= Fully Supervised
Mean Teacher ~ <=--- AutoAugment ~ Mean Teacher ~ <«==-- AutoAugment

17.5
40.0 \ ’

15.0
2 2
g 30.0 :5- 12.5
& = 10,0
20.0 7.5
5.0
10.0 —
———————————j————*—‘* ................ =
250 500 1000 2000 4000 250 500 1000 2000 4000
# Labeled examples # Labeled examples
(a) CIFAR-10 (b) SVHN

Figure 5: Comparison with semi-supervised learning methods on CIFAR-10 and SVHN with varied
number of labeled examples. The performances of 1I-Model, Pseudo-Label, VAT and Mean Teacher
are reported in [3].
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Unsupervised data augmentation (UDA)
Xie+(Google Brain), Unsupervised Data Augmentation, arXiv19.04
It works well also for NLP tasks

— Combined with a BERT pretrained model, it achieves SOTA-level
performance with only 20 samples

E.g. Yelp “They have the best happy hours, the
food is good, and service is even better. When it is
winter we become regulars.” — 4 star

Fully supervised baseline

Datasets IMDb Ye18-2 Yelg-S Amazon-2 Amazon-5 DBpedia
(# Sup examples) (25k)  (560k) (650k) (3.6m) (3m) (560k)
Pre-BERT SOTA 4.32 2.16 29.98 3:32 34.81 0.70
BERT| ArGE 4.51 1.89 29.32 2.63 34.17 0.64

Semi-supervised setting

eee ye 4s IMDb  Yelp-2 Yelp-5 Amazon-2 Amazon-5 DBpedia
Initialization UDA (20) (28) (5&() p

(20) (2.5K) (140)
, X | 4327 4025 5080 4539 55.70 41.14
Random v | 2523 833 4135 16.16 4419 7.24
— X | 2756 1360 4100 2675 44.09 2.58
BASE v | 545 261 3380 3.96 38.40 133
T X | 1172 1055 3890 15.54 42.30 1.68
LARGE v/ | 478 250 3354 3.93 37.80 1.09
BERToeroe - K| 630 204 3239 12.17 37.32
FINETUNE v | 420 205 3208 3.50 37.12

Table 1: Error rates on text classification datasets. In the fully supervised settings, the pre-BERT
SOTAs include ULMFiT [26] for Yelp-2 and Yelp-5, DPCNN [29] for Amazon-2 and Amazon-5,
Mixed VAT [51] for IMDb and DBPedia.



Active learning: Motivation and applications

Goal: enable to select a fixed number of samples such that an NN achieves
the maximum performance when trained on them
— Maximum performance from fewest samples
— Useful especially when we have a lot of unlabeled data but annotation cost is
high
— Or equivalently, we with to achieve a target accuracy with minimum
annotation cost

Which sample to choose: the priority computed by an acquisition function

N

Target

Accuracy

“<— Reduction in
training data size

Number of training samples



Active learning: Outline

* The standard procedure is as follows:
|.  Train your net with initial N labeled samples

2. Select N’samples (unlabeled) using the current net and give them
labels

3. Train your net using all the samples you currently have (from scratch)
4. Goto?2

C®

* Approaches [Settles, Active learning literature survey, 2010]

— Based on information theory: Select samples providing the maximum
information gain

— Based on uncertainty: Select samples leading to the most uncertain
prediction
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Math of uncertainty

An input

Prediction

Training data
S\

P(we|z*, D) = / P(we|",0) p(0ID) d6

Classification:
p(y=c|x) is
directly predicted
Regression: y is
predicted, not
p(Y[X)

Data M?):iel
/ N
Uncertainty Uncertainty of model
of prediction parameter dependent on
ﬁ? given an input training data
(Uncertainty (Uncertainty of model)
due to input)
Approximated by an

@ ensemble of models (trained
from different initial values)

M
P(w|x*,D) ~ % ZP(wc|w*,0(i)), 6% ~ q(0)
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Metrics of uncertainty

Single model

* Max-softmax
— aka. confidence

— Lower = more uncertain

-=_l. > 1msl.

* Entropy of softmax

— Higher = more uncertain

K
Hp(class | x)] = — > " px log py
k=1

ea_la < Nmel.

Ensemble models

Max of averaged softmax
Entropy of averaged softmax
Variance of softmax

— (in)consistency of model’s prediction
Variation Ratio (varR)

— Lower = more uncertain

Num of models predicting
f differently from the majority
m

=1 - —
Y T

Num of ensembles

Predicted class Predicted class

1-1/6 > 1-3/6

WWWNWW
WNWN UTW
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Softmax with temperature scaling

* Maximum of softmax outputs = confidence

)

N Zl

z2

Z3

|

zZ4

—

a

210,

XeUI]JOS

(0--0000)]

* Softmax w/ temperature scaling

n
Y2
Y3
Y4

Y10

: Prediction = the class
yielding the maximum
softmax

— Larger T makes the distribution more flat
— The defaultis T =1

'l: pr—

exp (z;/T)

2 exp (2/T) |




Calibration of softmax

Guo+, On Calibration of Modern Neural Networks, ICML2017

e Criticism for confidence: modern NNs tend to be overconfident

* Calibration: Adjust temperature so that confidence will be close

to classification accuracy

E.g. Samples with confidence=0.5
should be classified accurately
with probability = 0.5

% of Samples

Accuracy

LeNet (1998) ResNet (2016)
CIFAR-100 CIFAR-100
11 | |
Q > [¢)]
0.8 Lo gl 81,2
[+] Q
rull’g §| 21
0.6 ﬁlljﬁ ;c)l cEl
i 1 S
0.4 ol | (-
> >
< <
0.9 : ] | |
T 11
0.0
100.0 0.2 04 06 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
. I Outputs I Outputs
0.8 Gap Gap
0.6
0.4
0.2
00 Error=44.9 ¢ Error=30.6
.0.0 0.2 04 06 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
Confidence
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Model ensemble = MC-dropout

Ensemble of different models

The same network trained with
different initial values
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MC-dropout

— Dropout is used at test time
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Active learning with an ensemble of networks

Beluch+,The power of ensembles for active learning in image classification, CVPR2018

e An ensemble of networks trained with different initial values

— Acquisition function: varR (variarion ratio)

vER T
1'04 g 9@ irBeg-@pegeg gl | o~ | e -
R it iantana - 09 et
0.91 £ 0.g e B B
> 0.7
0 0.8 5
e | 00 | | = ENS-VarR o | Ay e ENS-VarR
e < 0.6
- ENS-Random - —— ENS-Random
0.7 v
O nrmm s ame | MC-VarR U (.51 SV e MC-VarR
< —— MC-Random < —— MC-Random
0.6 1 it o ;| N =T S | Single-Entropy 0.41 it .. AP .. Single-Entropy
————— Single-Coreset 0.3 ——- Single-Core-Set
0.5 0.5020 = 22 = == . — S|ng|e_Random ) 800 1000 1200 1400 1600 1800 2000 Slngle_Random

0 200

400 600

800 1000

2000 4000 6000 8000 1000012000 14000

Number of training images Number of training images

(a) MNIST on S-CNN (b) CIFAR-10 on DenseNet
Figure 1: Test accuracy over acquired images. We compare Variation Ratio for MC dropout and the ensemble (ENS) and
softmax-entropy based acquisition for a single network. For all methods we also show performance under random acquisition.
Shaded areas denote + one standard deviation. (see text for details about the architectures used).
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Outline

Data augmentation

— w/ Assignment 2
Transfer learning
Domain adaptation
Semi-supervised learning

Active learning / Uncertainty measure



