CONVOLUTIONAL NEURAL
NETWORKS --- BASICS



Convolutional Neural Networks (CNNs, ConvNets)

* Has a root in Neocognitron [Fukushima80]

* LeNet: A success in handwritten character recognition [LeCun+89]

* Basis in findings in neuroscience

— Simple cells, Complex cells [Hubel-Wiesel59]

— Local receptive field
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Fig 4 Schematic diagram 1llustrating the interconnections between layers 1in the neocognitron

[Fukushima+83]
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Simple cells & complex cells [Huber-Wiesel59]

Two types of cells exist in early visual cortex of animals

— There exist a large number of cells, each of which is selective to
particular position/orientation/scale

Simple cells: neurons that have selectivity on the orientation and
position of a feature (e.g., a bar)

— In the 2D retinal space

— Has selectivity = Selectively fires for the feature

Complex cells: neurons that are less selective to position
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Convolution

Uij = E , E :$i+p,j+thq

H—-1H-1

p:O q:O
Filter
Input Output
(Kernel)
77| 80| 82| 78| 70| 82| 82140
83| 78| 80| 83| 82| 77| 94|151 79| sol| 81| 79| 79| 98
87| 82| 81) 80| 74| 75]112(152 82| 81| 79| 75| 81114
0.01(0.08|0.01
87| 87| 85] 77| 66| 99]|151|167 85| 83| 770 72| 99|144
@ 0.08 |0.62|0.08
84| 79| 77) 78| 76|107]|162(160 79| 77| 77| 79(112(155
0.01(0.08(0.01
86| 72| 70| 72| 81|151|(166| 151 73| 71| 73| 89142162
78| 72| 73| 73|107|166|170( 148 73| 73| 77|/110(/160(166
76| 76| 77| 84(147|180|168( 142
Lit+p,j+q hpg Uiyg

The red 3x3 square in the input is called receptive field of the

convolution outputting the red value
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Pooling

* Selects a single value representing a local area (usually a square)
— Pooling has a local receptive field similar to convolution

— Stride > | yields output with lower resolution (downsampling)
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Convolution + pooling

8

5 S
SH = St
- R 4
32 Q M = v —
= _ [ _ == _, B
N filters HHHHHHH T
N output maps

\ Y | \ Y )

Convolution Pooling

w/downsampling

— 8X8XN




Convolution + pooling

Feature Invariance to
extraction small shifts
(simple cells) (complex cells)

Their combination achieves
invariance to small shape changes




Convolution as a layer of NNs

* Convolution operation w/ a filter can be implemented by a network

layer w/

— Sparse connection: Each output unit has connections only to input units

in its receptive field

— Shared weights: Connection weights are element values of the filter >
As the same filter is applied to the entire input, the layer weights are

shared by the output units
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Conv. layer in a general form

* In a general conv-layer, multiple filters are applied to multi-channel
inputs, yielding multi-channel outputs

— Each filter has the same number of channels as the input: K
— The number of filters specifies the number of output channels: M
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Convolutional neural networks

* A CNN is a feedforward network consisting of several alternating
convolution layers and pooling layers (or mere downsampling), on
top of which additional layers computing an output

— Each box below indicate the output of a conv. layer
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Visual recognition of object category

CNN —> ‘lion’

= ‘table lamp’

= ‘acoustic = ‘Blenheim
guitar’ spaniel’
= ‘electric = ‘Japanese
guitar’ spaniel’
= ‘chambered = ‘crane’

nautilus’




Difficulty with visual object recognition

* Previously, researchers tried to solve it in two steps:

Lion
Feature . Cat
Input —> —> Feature —> Classify

extraction Dog




Difficulty with visual object recognition

 Feature needs to have invariance, which tolerates various
types of variations within the category

“Television set”



Difficulty with visual object recognition

* Feature needs to have sensitivity, which can distinguish subtle
difference between different classes

‘Blenheim spaniel’ ‘Japanese spaniel’



Training of CNINs

* As they are just feedforward nets, they can be trained similarly to
standard FF nets.
— Weights are randomly initialized based on fan-ins

* Note: Backpropagation of deltas

— In a max pooling layer, they are backpropagated to the unit which was
selected in the pooling operation in the forward computation; other

units are ignored
— This is similar to backprop at ReLU; units that outputted zero are
ignored

— Forward

Backward

Forward
Backward

Input units Output unit
Max pooling layer RelLUs



Object recognition --- ImageNet

* The ImageNet project: database designed for research Colab notebook

— More than 14 million images have been hand-annotated
* Third-party image URLs; the actual images are not owned by ImageNet

— Contains more than 20,000 categories

* ImageNet Large Scale Visual Recognition Challenge (ILSVRC) from 201 |

— 1,000 object classes ~ one million images

* It was reported CNNs surpass human performance (He+, Delving deep into rectifier, 2015)

* Training w/ a GPU usually takes days
* Distributed system w/ many GPUs enables training less
than an hour
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https://drive.google.com/open?id=1DL-Ifym2CRLqlEGvtO9hJKXx4I1oeu-i
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Learned filters

Filters at 2"d conv.

Note: Hard to interpret except
for Ist conv filters



Padding

* Zero-padding:We often pad zeros around the input so that the
output will have the same size as the input

— Otherwise, the output will be smaller by the filter size than the input

(filter_size, stride, padding)
=(3, 1,0)

4, 1,2) 3,1, 1) (3, 1,2)

(input, output) = (4, 2) (5, 6) (5,5) (5,7)

. . .. . . . . . . 144
Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning (BibTeX)



https://arxiv.org/abs/1603.07285
https://gist.github.com/fvisin/165ca9935392fa9600a6c94664a01214

Stride Colab notebook for LeNet

*  We can apply filters sparsely (i.e., at every few pixels)

(filter_size, stride, padding)
=(3,2,0)

(input, output) = (5, 2) (5, 3) (6, 3)

(3,2, 1) (3,2, 1)

* Calculation of output size:

(input size) + (padding) x 2 — (filter Size)J 1

tput si =
(output size) { (stride)

. . .. . . . . . . 145
Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning (BibTeX)



https://arxiv.org/abs/1603.07285
https://gist.github.com/fvisin/165ca9935392fa9600a6c94664a01214
https://drive.google.com/open?id=1rFIbAgrN0vVNBbreVWbEe8NJQh5Rg17P
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ASSignmentS I Colab notebook for loading fewer data

* Mission:Analyze how the structure of a network affects its prediction
accuracy and how it depends on the size of training data

¢ Minimum requirements:

Create at least 10 networks (models) that have different structures, e.g., number of
layers, layer type (conv/fc), number of units, channels, filter size, etc.

Train each model on 1,000 and 50,000 samples until convergence, respectively
Test each model on 10,000 test samples to get mean prediction accuracy and create a

table like the one below

Observe your results and explain what you have found

Don’t forget to report the details of each model, e.g. the output of print(net), and
training method, e.g., optim.SGD(net.parameters(), 1r=0.001, momentum=0.9)

Model 1000 samples 5000 samples
1) 2FC_512 70.00% 92.00%

2) 3FC_128 128

3) LeNet



https://drive.google.com/open?id=1LzZqoCc7lkMLRK5VGK-l5nFS6mWm_Mfa

