TRAINING OF NEURAL
NETWORKS --- ADVANCED



Difficulty of training deep neural networks

* Itis (was?) difficult to train deep networks; the deeper, the harder

*  We frequently encounter overfitting

— Your model works very well on training data but not on novel data

test error

error

train error

* Vanishing gradient problem # epochs

— When backproagating them, deltas tend to blow up to infinity or
shrink to zero
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Why do gradients vanish!?

* If traditional activation functions are employed
— There is a bound in the output range of forward computation

— No bound on the output range of backward computation; backprop of
deltas is pure linear computation

— Input range for which the gradient of act-funcs is nonzero is narrow
* These are not the case with ReLU

— This is considered to be a reason why ReLU makes training easier
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Weight decay: a simple regularization

* Regularization to reduce degrees of freedom of weights at the
training time
— Prevent weights to blow up to infinity
— A small value is chosen for A



Dropout

* Randomly choose units of intermediate layer and invalidate them
— With probability p; only at the training time
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* Multiply unit outputs by p at the test time
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* Can be interpreted as regularization at the training time; the net works as
an ensemble of multiple networks at the test time



Batch normalization

Weights are initialized so as to match distributions of layer outputs

But this equilibrium won’t last long as training proceeds
— Weights are updated at each minibatch

BN normalizes the layer distribution over a minibatch using its stati
stics

— Mean and stddev of layer outputs over the minibatch samples are used
— Then normalize each layer output as

~ Ty — UB

— Provide some freedom [> W [> w [> W [>

w/ learnable parameters
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Data augmentation: basics

* The more training samples are, the better the result will be

— However, hard to get many samples with true labels
* We create ‘new’ samples from existing ones = data augmentation

* We can use all sorts of image transformation that do not change
‘contents’
— Crop, horizontal/vertical flip
— Geometric warp: scaling, sheer, etc.
— Color changes

[Karianakis+2015]



Data augmentation: advanced

e Cutout [Devries+2017] *  Mixup [Zhang+2018]
— Mask a part of the image with — Pick two samples w/ different
randomly generated gray square labels and mix up them as follows
— Train the model to predict the % = Ax; + (1 — M)x;

class correctly -

d=\d; + (1 - \)d,

— The weight A is randomly chosen

from [0, 1]
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Learning rate control

* The most important hyper-parameter: learning rate ¢
— It controls the step size of SGD
* Trial-and-error is inevitable for its selection

— Depends on tasks and data
— Grid search

* Try many values systematically on the first few epochs
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https://sgugser.github.io/how-do-you-find-a-good-learning-rate.html|



https://sgugger.github.io/how-do-you-find-a-good-learning-rate.html

Learning rate control

Changing it during training often contributes to improved results

Starting from a value, scale
it by 1/10 at appropriate
timing

Or automatic schedule, e.g.
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(a) An example of super-convergence.



AdaGrad

* Early method for automatically determining learning rate

— Make update steps shorter for the elements which underwent
large updates in the past

Normal SGD

rewriting
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Sum over all previous updaets  To avoid division by zero
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RMSProp/AdaDelta

* To resolve a drawback of AdaGrad: Step size eventually goes to zero

* Moving average over previous gradients is employed instead of their

total sum ) ) )
(i)t = Y95 )e—1 + (L —7)9:

* RMSProp:
Root Mean Square Awt ;= — - Gt i
| VgD +e
* AdaDelta replaces learning rate with moving average of updates
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— where (Aw?); = y(Aw?);—1 + (1 —7)(Awy;)?



Adam

Adaptive moment estimation

Integrates RMSProp with momentum

— Generalize the idea of adjusting updates with moving average of gradients

Estimates of 15t and 2" moments of gradients with their movin
g g

average:
& my; = Bimy—1; + (1 — B1)ge.

Vi = P11 + (1 _ 62)9152,7; & A variant: AdaMax

(I norm replaced by 1.,)

There are biases in them, which can be corrected as
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A variant: Nadam
(g: is computed by Nesterov accelerated gradient)
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Nesterov’s accelerated gradient

* Gradient is computed not at current w but at w+momentum

— Know to work well particularly for training RNNs

V by

W — w, |:{> VE,

(i) (ii)

W = W, + vy

momentum
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Behavior of various optimizers

* In this example

Momentum overshoot; NAG
works better

Adagrad/Adadelta/RMSprop
work equally well

SGD is slow
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* Behavior around a saddle point
— AdaDelta is the fastest

— Adagrad/RMSprop perform
similarly

— Momentum/NAG are slow
— SGD is trapped forever

—  SGD
= Momentum
= NAG
- Adagrad
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Images credit: Alec Radford.
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