
TRAINING OF NEURAL 
NETWORKS --- ADVANCED
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Difficulty of training deep neural networks

• It is (was?) difficult to train deep networks; the deeper, the harder
• We frequently encounter overfitting

– Your model works very well on training data but not on novel data

• Vanishing gradient problem
– When backproagating them, deltas tend to blow up to infinity or 

shrink to zero
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Why do gradients vanish?

• If traditional activation functions are employed
– There is a bound in the output range of forward computation
– No bound on the output range of backward computation; backprop of 

deltas is pure linear computation
– Input range for which the gradient of act-funcs is nonzero is narrow

• These are not the case with ReLU
– This is considered to be a reason why ReLU makes training easier



Weight decay: a simple regularization

• Regularization to reduce degrees of freedom of weights at the 
training time
– Prevent weights to blow up to infinity
– A small value is chosen for λ



Dropout

• Randomly choose units of intermediate layer and invalidate them
– With probability p; only at the training time

• Multiply unit outputs by p at the test time
– To compensate for the invalidation

• Can be interpreted as regularization at the training time; the net works as 
an ensemble of multiple networks at the test time
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Batch normalization

• Weights are initialized so as to match distributions of layer outputs
• But this equilibrium won’t last long as training proceeds

– Weights are updated at each minibatch

• BN normalizes the layer distribution over a minibatch using its stati
stics
– Mean and stddev of layer outputs over the minibatch samples are used
– Then normalize each layer output as

– Provide some freedom 
w/ learnable parameters
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Data augmentation: basics

• The more training samples are, the better the result will be
– However, hard to get many samples with true labels

• We create ‘new’ samples from existing ones = data augmentation
• We can use all sorts of image transformation that do not change 

‘contents’
– Crop, horizontal/vertical flip
– Geometric warp: scaling, sheer, etc.
– Color changes

[Karianakis+2015]



Data augmentation: advanced

• Cutout [Devries+2017]

– Mask a part of the image with 
randomly generated gray square

– Train the model to predict the 
class correctly

• Mixup [Zhang+2018]

– Pick two samples w/ different 
labels and mix up them as follows

– The weight λ is randomly chosen 
from [0,1]
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Learning rate control

• The most important hyper-parameter: learning rate
– It controls the step size of SGD

• Trial-and-error is inevitable for its selection
– Depends on tasks and data
– Grid search

• Try many values systematically on the first few epochs

✏

https://sgugger.github.io/how-do-you-find-a-good-learning-rate.html

https://sgugger.github.io/how-do-you-find-a-good-learning-rate.html


Learning rate control

• Changing it during training often contributes to improved results
– A standard practice: Use smaller values as training proceeds

– Cyclical control
• Cyclical learning rate; Smith (arXiv:1803.09820)

1081 cycle method: 
smallàlargeàsmallàsmallest

Starting from a value, scale 
it by 1/10 at appropriate 
timing
Or automatic schedule, e.g.
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• Early method for automatically determining learning rate
– Make update steps shorter for the elements which underwent 

large updates in the past 

AdaGrad
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RMSProp/AdaDelta

• To resolve a drawback of AdaGrad: Step size eventually goes to zero 
• Moving average over previous gradients is employed instead of their 

total sum

• RMSProp: 

• AdaDelta replaces learning rate with moving average of updates

– where
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Root Mean Square



Adam

• Integrates RMSProp with momentum
– Generalize the idea of adjusting updates with moving average of gradients

• Estimates of 1st and 2nd moments of gradients with their moving 
average:

• There are biases in them, which can be corrected as

• Adam:
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Adaptive moment estimation

ß A variant: AdaMax
(l2 norm replaced by l∞)

A variant: Nadam
(gt is computed by Nesterov accelerated gradient)



Nesterov’s accelerated gradient

• Gradient is computed not at current w but at w+momentum
– Know to work well particularly for training RNNs
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Behavior of various optimizers

• In this example
– Momentum overshoot; NAG 

works better
– Adagrad/Adadelta/RMSprop

work equally well
– SGD is slow

• Behavior around a saddle point
– AdaDelta is the fastest
– Adagrad/RMSprop perform 

similarly
– Momentum/NAG are slow
– SGD is trapped forever
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