
TRAINING OF NEURAL
NETWORKS --- ADVANCED

99

Difficulty of training deep neural networks

• It is (was?) difficult to train deep networks; the deeper, the harder
• We frequently encounter overfitting

– Your model works very well on training data but not on novel data

• Vanishing gradient problem
– When backproagating them, deltas tend to blow up to infinity or

shrink to zero

epochs

er
ro
r

train error

test error

Why do gradients vanish?

• If traditional activation functions are employed
– There is a bound in the output range of forward computation
– No bound on the output range of backward computation; backprop of

deltas is pure linear computation
– Input range for which the gradient of act-funcs is nonzero is narrow

• These are not the case with ReLU
– This is considered to be a reason why ReLU makes training easier

Weight decay: a simple regularization

• Regularization to reduce degrees of freedom of weights at the
training time
– Prevent weights to blow up to infinity
– A small value is chosen for λ

Dropout

• Randomly choose units of intermediate layer and invalidate them
– With probability p; only at the training time

• Multiply unit outputs by p at the test time
– To compensate for the invalidation

• Can be interpreted as regularization at the training time; the net works as
an ensemble of multiple networks at the test time

w1izi

w2izi

w3izi

w4izi

zi
i i

pw1izi

pw2izi

pw3izi

pw4izi

Batch normalization

• Weights are initialized so as to match distributions of layer outputs
• But this equilibrium won’t last long as training proceeds

– Weights are updated at each minibatch

• BN normalizes the layer distribution over a minibatch using its stati
stics
– Mean and stddev of layer outputs over the minibatch samples are used
– Then normalize each layer output as

– Provide some freedom
w/ learnable parameters

104

W
l l+1

W W
l-1

zl-2 zl-1 zl zl+1

Data augmentation: basics

• The more training samples are, the better the result will be
– However, hard to get many samples with true labels

• We create ‘new’ samples from existing ones = data augmentation
• We can use all sorts of image transformation that do not change

‘contents’
– Crop, horizontal/vertical flip
– Geometric warp: scaling, sheer, etc.
– Color changes

[Karianakis+2015]

Data augmentation: advanced

• Cutout [Devries+2017]

– Mask a part of the image with
randomly generated gray square

– Train the model to predict the
class correctly

• Mixup [Zhang+2018]

– Pick two samples w/ different
labels and mix up them as follows

– The weight λ is randomly chosen
from [0,1]

0.4 ×

0.6 ×
+

à

Input: Desired output:

xi

xj

x

+

à

0.4 ×

0.6 ×

di

dj

d
~~

x̃ = �xi + (1� �)xj
<latexit sha1_base64="Bq68Xmxf2LjJJsnOCFAqMBb21pw=">AAADAnichVG/SxxREP5cE3OaRE/TCGmWHAZD8HirAUUICDYp/ZFTwZNjd+/t3dO3P9h9d3gu11n5D1hYKaQwqUJaO5t0aRRyf0JIaSCNhbN7S4yR6Ft2Z943830zs2MFUkSKsU6P1vvgYd+jXP/A4ydPB4fywyMrkd8IbV6yfemHa5YZcSk8XlJCSb4WhNx0LclXra35JL7a5GEkfO+9agV8wzVrnnCEbSqCKvn5shKyyuOya6q65cTb7bb+Vi9LUqia+jVaEfprfdyYyCKv/opsVvIFVmTp0W87RuYUkJ0FP3+GMqrwYaMBFxweFPkSJiJ61mGAISBsAzFhIXkijXO0MUDcBmVxyjAJ3aJvjW7rGerRPdGMUrZNVSS9ITF1jLFzdswu2Ff2if1gl//VilONpJcWWavL5UFlaG90+fe9LJesQv2adWfPCg5m0l4F9R6kSDKF3eU3d/YvlmeXxuKX7Ij9pP4PWYed0gRe85f9YZEvHaTqVeI4ZLu1C/QH4z+3Ok3gkFaCtm9kN8nad2XTao1/F3nbWZksGlPFycU3hbmpbMk5PMcLjJPGNObwDgsoUaVjfMN3dLRd7aP2WfvSTdV6Ms4z3DjayRXtE7WA</latexit>

d̃ = �di + (1� �)dj
<latexit sha1_base64="LWZEtGps6qGAUPbEQkrU0n2YM8E=">AAADAnichVE7SxxRFP4cTTQ+4sY0gs3goighyx0NKIGAYGPpI6uCK8s87rhX7zyYubtghu1S5Q9YWBmwUCtJm84mXZoI2Z8QLA2kSZEzs0N8od5h5pz7nfN955w5VihFrBhrdWidXU+edvc86+3rH3g+WHgxtBoH9cjmZTuQQbRumTGXwudlJZTk62HETc+SfM3amU/jaw0exSLw36vdkG965pYvXGGbiqBqYb6ihHR4UvFMVbPcxGk29Xd6RZKCY+pXaFXor/QJ43UembwW2a4WiqzEsqPfdYzcKSI/i0HhBypwEMBGHR44fCjyJUzE9GzAAENI2CYSwiLyRBbnaKKXuHXK4pRhErpD3y26beSoT/dUM87YNlWR9EbE1DHGztkRu2Tf2An7xf7eq5VkGmkvu2StNpeH1cFPwyt/HmV5ZBVqV6wHe1ZwMZv1Kqj3MEPSKew2v/Fh73Ll7fJYMs4+swvq/4C12BlN4Dd+24dLfHk/U3eI45Jt1y7SH0z+32o0gUtaKdq8kd0gaz+UTas1bi/yrrM6VTKmS1NLb4pz0/mSezCCUUyQxgzmsIBFlKnSEb7jJ1raR+1YO9W+tFO1jpzzEjeO9vUfWX+1RA==</latexit>

Learning rate control

• The most important hyper-parameter: learning rate
– It controls the step size of SGD

• Trial-and-error is inevitable for its selection
– Depends on tasks and data
– Grid search

• Try many values systematically on the first few epochs

✏

https://sgugger.github.io/how-do-you-find-a-good-learning-rate.html

https://sgugger.github.io/how-do-you-find-a-good-learning-rate.html

Learning rate control

• Changing it during training often contributes to improved results
– A standard practice: Use smaller values as training proceeds

– Cyclical control
• Cyclical learning rate; Smith (arXiv:1803.09820)

1081 cycle method:
smallàlargeàsmallàsmallest

Starting from a value, scale
it by 1/10 at appropriate
timing
Or automatic schedule, e.g.

✏t = ✏0 � ↵t

• Early method for automatically determining learning rate
– Make update steps shorter for the elements which underwent

large updates in the past

AdaGrad

109

ó
rewriting

Sum over all previous updaets To avoid division by zero

Normal SGD

AdaGrad

RMSProp/AdaDelta

• To resolve a drawback of AdaGrad: Step size eventually goes to zero
• Moving average over previous gradients is employed instead of their

total sum

• RMSProp:

• AdaDelta replaces learning rate with moving average of updates

– where

110

Root Mean Square

Adam

• Integrates RMSProp with momentum
– Generalize the idea of adjusting updates with moving average of gradients

• Estimates of 1st and 2nd moments of gradients with their moving
average:

• There are biases in them, which can be corrected as

• Adam:

111

Adaptive moment estimation

ß A variant: AdaMax
(l2 norm replaced by l∞)

A variant: Nadam
(gt is computed by Nesterov accelerated gradient)

Nesterov’s accelerated gradient

• Gradient is computed not at current w but at w+momentum
– Know to work well particularly for training RNNs

112

(i)

momentum

(ii)

(i) (ii)

Behavior of various optimizers

• In this example
– Momentum overshoot; NAG

works better
– Adagrad/Adadelta/RMSprop

work equally well
– SGD is slow

• Behavior around a saddle point
– AdaDelta is the fastest
– Adagrad/RMSprop perform

similarly
– Momentum/NAG are slow
– SGD is trapped forever

113
Images credit: Alec Radford.

https://twitter.com/alecrad

