TRAINING OF NEURAL
NETWORKS --- BASICS

Outline of training neural networks (recap)

* Training is formulated as a minimization problem

Given a set of I/O pairs: S = {(x1,d1),..., (xn,dN)}

/H\}M\}M\Mﬁ
O
Xn :> :v, ‘ny ‘y "‘\v: :> Yn & dn
: 8
Weights ,/
w={(W& @) ... (WL ply} Loss: E(w,S)

We want to solve min F(w,S)

wW

Basic algorithm: gradient descent

* Update the parameter in the direction of gradient of E(w)

wit) = wlt) _e¢VE & learning rate

-
o dE _[0E OF

dw owq ow s
E(wlij) A wl A

Computing gradients is cumbersome

B TR

Eg B Lly—d|* - |
OF,,

= (Y Xn

OB (v

> (y; —dy)?

Because our variables are inside deeply nested functions

T Ov Ow O

o NS
K ORKX R ORI
e

\ \v" VAY, = “
W7 NANY XA
AN OS

Outline of backpropagation (BP) algorithm

. . . . En —
* Using delta 5](.” = OFn , gradient is given by OFn _ s, (-1)
(1) (1) i~

* Deltas can be computed by their backpropagation:

l [+1 [+1 l
o =30l (wi V)
k

[—1 [[+1

Derivation of BP algorithm: Preparation

* We represent the bias b by a weight wj; from an imaginary unit that
always outpus +1| (A trick making analysis easier)

A = 320D 4 by = 3 00D
=1 1=0

Derivation of BP algorithm: Chain rule 1/2

* The derivative wrt. w;¥) (a Ith layer weight) is written as:

OE, OE, Buy)

N l l
Bwj(- 7;) 8u§-) awj(. ,L.)

Derivation of BP algorithm: Chain rule 2/2

0E, OE, Bugl)

O~ 4.0 4.0
awﬁ Buj Bwjz-

Bu(-l)

. d i i - =1 @ _ 1) (-1
2"% term is rewritten as Ok 2 & upl =Y, ,wj(_i)zzﬁ)
g

* ul) affects u, "V (i.e., u ") is a function of u¥) (k=1,...)

OE, 3 OE, Oul™

) I+1 l
Gug.) . (9u,(c+) au§.>

Derivation of BP algorithm: Deltas

OE,, 3 OE, Oul™

8u§l) _ k 8u,(€l+1) 8u§.l)
E,
* We define delta as: 53(-” = 0 0
ou:

J

* Then the equation is rewritten as:

(l) 25(1+1)((l+1) (gl)))

A 23 w0 2 5 0)

= au(l-i'l)/a () _ ,wk+1)f/((l))

Derivation of BP algorithm: Backprop of deltas
5§l) 25(l+1)((l+1) (§l)))

* This eq means deltas can be calculated by backpropagation
* We can start it from deltas at the output layer

5(L) B oFE,
J _au(-L)
J

Derivation of BP algorithm: Summary

* The derivative we want is given by using the delta as

OLn _ «wy0-1) o 9En _ OEx du;’

@ — % O~ 4.0 a0
ow Owj; Ou;”’ Ow;,

Je

2

* |If the loss is sum over multiple samples, we need only to calculate
the sum of gradients over them as follows:

E=5 E,

OF OF,,
8wj(-i-) B Zn: 8wj(.?

Complete backpropagation algorithm

* Input: a pair of input x, and desired output d,
* Output: the derivative of a loss wrt. each of all layer weights

|. Forward propagation from the input layer
— z,and u, at each layer | are computed for [=2,3,...,L

2. Compute deltas at the output layer

3. Backward propagation from the output layer
— Compute deltas 6) at each layer [for I=L,L-1,...2 according to

5;1) _ Z5l(cl+1) ((l+1)f (u (z))>
k

4. Compute the derivative of the loss wrt. each weight w;{) by

OFn = 500D
Ow (l)

Deltas at the output layer

* Regression with squared loss and identity act-func at output layer

1 1
=gl =l =5 - | ==
J
s = OB _) g) gy g
J 5y L) U j i = Yj J
J

* Multi-class classification: cross-entropy loss and softmax

(L)
exp(u
—delogykz—delog< p(k()))
k k >_iexp(u;)

1 0
(L) de Yk [di:dk dkdj:()(k?’éj) de:l]

d;(1—yj;) de ~Y;) de(yj—dj) =yj —dj
k#j

(fl9) =(f'9—rfd)/g°

0.8 |
0.6 |
0.4
0,2 |

-0,2 b
0.4 b
0.6 |
0.8 b

Derivation of activation functions

fu

f'(u

)
flu) =1/(1+e7")
f(u) = tanh(u)

)

f(u) = max(u, 0)

f'(u) =1 — tanh®(u)

1 >0
/ u) = —
f({O u <0

)

f(u) = fu)(1 = f(u))
)
)

\ F,gf"LF;__ tanhix)
Yo7 1-tanh{x)*tanhix)

0.8
0.6
0.4
0.2

—— -

-0.2
-0.4
-0,6
-0,8

Outline of training a neural net

|. Design your network

— Number of layers, units at each layer, activation functions etc.

2. Choose an optimizer w/ hyper-barameters
— SGD w/momentum,Adam, ...
— Learning rate, momentum, ...

— Initialize weights and biases

3. Prepare your data
— Divide all the available data into train, validation, test splits
— Preprocess the data (e.g., standardization, data augmentation)

— Create minibatches

4. Run your optimizer on the train split

— Weights are updated per a minibatch (= one iteration)
— Repeat updates for one or more epochs

. One epoch = iterations over all minibatches

— Check at times generalization performance of your net using the val split

Stochastic gradient descent: Use of minibatch

* Batch optimization

— Minimize the sum of errors (losses) over all training samples
Wil =Wy —€VE, where E(w)= Z E,(w)

* Remark:This appears reasonable considering our goal; however this does
not work well in practice (= it will be trapped in bad solutions)

* Stochastic gradient descent (SGD)

— Compute gradient of E of a single sample or at most hundreds
samples (= minibatch) and then update w

1
Wi =Wy —€VE, where FEi(w)= N Z E,(w)

* Remark:We minimize a different objective func at each update; but this
works much better

SGD w/ momentum

* That said, each update tends to be unstable; needs many
iterations when trapped around ravine

* Some amount (1~0.5-0.9) of the last update is added

— Rolling ball with inertia; improved stability; efficient exploration

Wil — Wi — EVEt + V¢ where Vy = Wy — W

w/o momentum w/ momentum

89

Initialization of weights

* Weights and biases are randomly initialized
— Chosen from a normal distribution w,; ~ N (0, 0?)
— Or a uniform distribution w; ~ U(-q, a)

* How do we select the range, i.e., o or a?

— lts choice is very, very important

* A requirement: the layer outputs between neighboring layers should
have similar distribution widths

Var(z D) ~ Var(zW)

[>W[>W[>W[>

Initialization of weights

Problem:What's the condition on o to enable Var(z!™9) ~ Var(z) ?

A layer propagation before act-func.: O O
. Mo
u§l+1) — Zw](i‘Fl)ZZ(Z) ‘fan'ins, C>//’ Q

1=1

—

Assuming independence of the variables plus E(w)=0, we have

Var(u'™9) = MVar(wV 20 = MVar(wD)E(2(0?)
— We used here Var(XY) = E(X?)E(Y?) — E(X)2E(Y)?

If E(z)=0, then the above reduces to

Var(u1) = MVar(w™)Var(z1))

Initialization of weights

* If we assume an identity function for f

— We can assume E(z) = 0 and

Var(z+)) = Var(u1) = MVar(w) Var(zV)

* We require Var(z!'t1) ~ Var(z(")

Var(w) = 1/M = W~ N(O, 1/\/ M) --- A standard initialization
(the default in PyTorch)

* When fis ReLU, E(z) # 0 and instead we have

1

Var(u(H1)) = iMVar(w(lH))Var(u)

— We used here: F(z\V?) = Var() for () = max(0, u®)

— The requirement reduces to

Var(w) =2/M = w~ N(0,4/2/M) ---A method proposed in
[Kaiming He+ 2015]

Generalization ability

Goal of training: to make it possible to predict outcome values for
previously unseen data
We minimize loss on training data = training loss/error

— You can make it as small as you like, even toward zero

* E.g, By using a model (net) with an excessively large number of parameters

To check how close to the above goal, we evaluate the performance
of our model on the samples we haven’t used for training

— We save a portion of the data for this purpose = validation/test data

error

test error

train error

epochs

Standard practice of handling data

Available data: (x,d) pairs

>

Training data CD Validation data

Each used to ... Cross-validation

Estimate perf. on

Optimize model parameters
unseen data

* Check generalization
ability
* Select hyper-parameters
Don’t do this on test data

* Standardization is found and * Same standardization
applied needs to be applied
* Further split to minibatches

Test data

Final evaluation

Estimate real perf.

Same standardization
needs to be applied

Standardization of inputs

Xn = [xnlaxn% S 73777,[]—'_

Input distrib. ° | Step |:Subtract mean i

'l g dE Tni < Tni — T4 i

. 0....'. : 4 N N S8 ..: .:.
-1r . -.;..: :." i X ".] . L b .:: !‘é;.:.; ...:l .
ol Pk , Li = E Lng / N Lo
. | n=1 7

Step 2: Divide by std.dev. = .. Step 3: il

. 2 7 | Decorrelate ® | Y
nt [/ i B T] L. VAR .
Tni < - 1 R elements R L R I
.) SRR | L ~ N e
: o (whitening) ° g
-é}‘;o:’.: ..'.

1 o -
Ti =\ ¥ Z(ﬂfm — T;)? _27,. e |)

30,] -3r

How to get started on Google Colaboratory

* You need to have a Google account and log in to it with your browser

* Access https://colab.research.google.com/

— Choose ‘File’—’'New Python 3 notebook’ to create a blank notebook

— Then ‘File'—'Rename...’ to name it and ‘File’—'Save’ to save it in your Drive

* Don’t forget choose ‘Runtime’—‘Change runtime type’ and set ‘Hardware accelerator’ to ‘GPU’
with the notebook

* Or click here to open a sample notebook, and either
— ‘Open in Playground’ below the menu bar to immediately test it

— Or ‘File’—'Save a copy in Drive...” to make its copy on your own Drive
— Click a cell and press SHIFT+RETURN to run the code at the cell

https://colab.research.google.com/
https://drive.google.com/open?id=1JgosfJ_Ne4HekEkUDL--R6h9qfjVRv0w

Programming language & DL framework

We will use Python 3 for writing code

— Get familiar with the language using online learning resources
* E.g, https://wiki.python.org/moin/BeginnersGuide/NonProgrammers

— Learn by practicing; you can start with minimum knowledge
and PyTorch for building/training/testing neural nets

— Primarily developed by Facebook Al

— Shares popularity with Google’s Tensorflow

80% PyTorch vs TensorFlow: % Unique Mentions of PyTorch

80%
—e— eccv
nips
70%{ —*— acl
—e— naacl
—— icml
60%{ —*— cvpr
iclr
—e— iccv
50% emnlp

70%

60%

50%

40%

40%

30% 30%

of total framework mentions

%

R 20% 20%

10% 10%

0% 1 0%

2017 2018 2019 2020
Year

https://thegradient.pub/state-of-ml-frameworks-20 | 9-pytorch-dominates-research-tensorflow-dominates-industry/

