BASIC DESIGN OF NEURAL NETWORKS

Unit (or neuron or cell)

• A simplified model of a (biological) neuron

$$u = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 + b$$
$$z = f(u)$$

Activation function

• f is called activation function

$$z=rac{1}{1+e^{-u}}$$
 Logistic (sigmoid) function
$$z= anh(u)$$
 Hyperbolic tangent Classical
$$z=\max(u,0)$$
 ReLU: Rectified Linear Unit Current standard

$$u = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 + b$$
$$z = f(u)$$

Other activation functions

So many proposals, but ReLU is still the standard

pReLU (parametric...) [He+2015] Leaky ReLU

$$f(u) = \begin{cases} u & \text{if } u > 0\\ au & \text{otherwise} \end{cases}$$

ELU (exponential...) [Clevert+2016]

$$f(u) = \begin{cases} u & \text{if } u > 0\\ a(\exp(u) - 1) & \text{otherwise} \end{cases}$$

Swish [Ramachandran+2017]
Mish [Misra, arXiv1908]

$$f(u) = u \cdot \tanh(\log(1 + e^u))$$

Single-layer network

- Arranging multiple units to form a layer
 - All the units share their inputs → fully-connected layer

$$u_j = \sum_{i=1}^{I} w_{ji} x_i + b_j$$
 $\mathbf{u} = \mathbf{W} \mathbf{x} + \mathbf{b}$ $\mathbf{z}_j = f(\mathbf{u}_j)$ $\mathbf{z} = \mathbf{f}(\mathbf{u})$

$$\mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_J \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_I \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_J \end{bmatrix}, \quad \mathbf{z} = \begin{bmatrix} z_1 \\ \vdots \\ z_J \end{bmatrix},$$

$$\mathbf{W} = \begin{bmatrix} w_{11} & \cdots & w_{1I} \\ \vdots & \ddots & \vdots \\ w_{J1} & \cdots & w_{JI} \end{bmatrix}, \quad \mathbf{f}(\mathbf{u}) = \begin{bmatrix} f(u_1) \\ \vdots \\ f(u_J) \end{bmatrix}$$

Multi-layer network

- Stacking layers → a multi-layer network
 - We will call this a feed-forward neural network

 $l = 1 \quad 2 \quad 3$ $l = 1 \quad 2 \quad 3$ $x_1 \quad \mathbf{W}^{(2)} \quad \mathbf{W}^{(3)} \quad \mathbf{y}_1 \quad \mathbf{z}^{(1)} \quad \mathbf{z}^{(2)} \quad \mathbf{z}^{(3)} \quad \mathbf{y} = \mathbf{z}^{(3)}$

Quick explanation of training neural networks

A network expresses a function from input x to output y

$$\mathbf{y}(\mathbf{x}; \mathbf{W}^{(2)}, \cdots, \mathbf{W}^{(L)}, \mathbf{b}^{(2)}, \cdots, \mathbf{b}^{(L)})$$
 $\mathbf{y}(\mathbf{x}; \mathbf{w})$

Assume we have a set of pairs of input x and desired output d

$$\{(\mathbf{x}_1, \mathbf{d}_1), (\mathbf{x}_2, \mathbf{d}_2), \dots, (\mathbf{x}_N, \mathbf{d}_N)\}\$$

• We adjust the parameters of the net, i.e., W = (W, b), so that it will replicate the input-output pairs:

$$\mathbf{y}(\mathbf{x}_n; \mathbf{w}) \sim \mathbf{d}_n$$

We hope the trained net will able to predict y for any novel x

Quick explanation of training neural networks

• Training is formulated as a minimization problem

Given a set of I/O pairs: $S = \{(\mathbf{x}_1, \mathbf{d}_1), \dots, (\mathbf{x}_N, \mathbf{d}_N)\}$

We want to solve $\min_{\mathbf{w}} E(\mathbf{w}, \mathcal{S})$

We need to specify the output layer and a loss for each problem

Problems and corresponding output layers/losses

- Regression
 - E.g., Prediction of height of a person/face orientation etc.
- Multi-class classification
 - E.g., Dogs, cats, foxes, rats, ...
- Multi-label classification
 - E.g., Binary attributes of a person's face in a picture; wearing eyeglasses, hat, beard, mask...
- Ordinal regression
 - E.g., Height of a person divided into 8 ranks
- Metric learning
 - E.g., Judge if two faces in different picture belong to the same person

Regression

- Output layer = the same number of units as target variables
 - Usually tanh or identity is chosen for activation func.
 - Its range should match the range of the target variables
- The most common loss: sum of the squared difference between d and y

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} ||\mathbf{d}_n - \mathbf{y}(\mathbf{x}_n; \mathbf{w})||^2$$

Multi-class classification

- Output layer: the same number of units as classes
- Softmax func. is used for the activation func.
- The cross-entropy loss is used for the measure between prediction and truth

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} d_{nk} \log y_k(\mathbf{x}_n; \mathbf{w})$$

$$\mathbf{d} = [0, \dots, 0, 1, 0, \dots, 0]$$

$$\mathbf{z}^{(1)}$$

$$\mathbf{z}^{(2)}$$

$$\mathbf{z}^{(3)}$$

Softmax

- Softmax: (normalizing the outputs in range [0,1] and their sum is equal to 1
 - $-u_k$'s (inputs to the output layer) are called logits

$$y_k \equiv z_k^{(L)} = \frac{\exp(u_k^{(L)})}{\sum_{j=1}^K \exp(u_j^{(L)})} \qquad \left[\sum_{k=1}^K y_k = 1 \right]$$

- We regard the outputs y_k 's as a posterior probability of class k
 - Conditional probability of class k given an input x
 - This may considered as likelihood of class k

$$p(\mathcal{C}_k|\mathbf{x}) = y_k = z_k^{(L)}$$

- Desired output d is usually defined to be a vector having I for the true class and 0 for others
 - Called one-hot vector or I-of-K coding

Derivation of cross-entropy loss

- We build a model:
 - The output of our net represents posterior probs: $p(\mathcal{C}_k|\mathbf{x}) = y_k = z_k^{(L)}$
- Want to determine its parameter; how to do this?; an infinite ways
 - A sure way is to use maximum likelihood estimation
- How likely do we get the current observations from our model?
 - Observations = \mathbf{d}_n for a given \mathbf{x}_n
 - Likelihood of the net parameter for all the N samples is

$$L(\mathbf{w}) = \prod_{n=1}^{N} p(\mathbf{d}_n \mid \mathbf{x}_n; \mathbf{w}) = \prod_{n=1}^{N} \prod_{k=1}^{K} p(\mathcal{C}_k \mid \mathbf{x}_n)^{d_{nk}} = \prod_{n=1}^{N} \prod_{k=1}^{K} (y_k(\mathbf{x}; \mathbf{w}))^{d_{nk}}$$

A standard trick —

$$p(\mathbf{d} \mid \mathbf{x}) = \prod_{k=1}^{K} p(\mathcal{C}_k \mid \mathbf{x})^{d_k}$$
$$p(d_k = 1 \mid \mathbf{x}) \equiv p(\mathcal{C}_k \mid \mathbf{x})$$

$$p(d_k = 1 \mid \mathbf{x}) \equiv p(\mathcal{C}_k \mid \mathbf{x})$$

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} d_{nk} \log y_k(\mathbf{x}_n; \mathbf{w})$$

Negative log-likelihood

Binary classification

- Two solutions
 - softmax + CE loss for two classes
 - Formulated as a multi-class classification
 - i) logistic activafiton func. + ii) CE loss

i)
$$y = 1/(1 + \exp(-u))$$

$$ii) E(\mathbf{w}) = -\sum_{n=1}^{N} \left[d_n \log y(\mathbf{x}_n; \mathbf{w}) + (1 - d_n) \log \left\{ 1 - y(\mathbf{x}_n; \mathbf{w}) \right\} \right]$$

$$\left[L(\mathbf{w}) \equiv \prod_{n=1}^{N} p(d_n \mid \mathbf{x}_n; \mathbf{w}) = \prod_{n=1}^{N} \left\{ y(\mathbf{x}_n; \mathbf{w}) \right\}^{d_n} \left\{ 1 - y(\mathbf{x}_n; \mathbf{w}) \right\}^{1 - d_n} \right]$$

Multi-label classification

- Multi-label classification = binary classification for each label
- Output layer: the same number of units as labels
 - Activation func.: logistic sigmoid
 - Output of k^{th} unit = likelihood of label k for input x
- Sum of cross-entropy loss for each label

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} d_{nk} \log y_k(\mathbf{x}_n; \mathbf{w}) + (1 - d_{nk}) \log(1 - y_k(\mathbf{x}_n; \mathbf{w}))$$

Truth
Bald
Goatee
Male
Oval_Face
Receding_Hairline

Truth
Arched_Eyebrows
Blond_Hair
Heavy_Makeup
No_Beard
Pointy_Nose
Wavy_Hair
Wearing_Lipstick

Ordinal regression

- Looks similar to multi-class classification, but differs in that there is order in the classes
- E.g., We want to predict the age (e.g., 0-99) of a person from its face image
 - 100-class classification? → A slight error is penalized equally to large errors, e.g., 32(true) vs. 31(pred); and 32 vs. 50
 - We need to take distance between prediction and its truth into account

Ordinal regression: two approaches

- Convert into K-1 independent binary classifications
 - k^{th} unit predicts if x is larger than k^{th} class \rightarrow yes(1) or no(0)

$$\begin{cases} d_k = 1 & \text{if } r_k < r, \\ d_k = 0 & \text{otherwise} \end{cases}$$

• Sum of the K-1 binary classification results gives the class id K-1

$$q = 1 + \sum_{k=1}^{K-1} f_k(\mathbf{x'})$$

Niu+, Ordinal Regression with Multiple Output CNN for Age Estimation, CVPR2016

Set the target label to be a soft label

$$d_k = \frac{e^{-\phi(r_t, r_k)}}{\sum_{i=1}^{K} e^{-\phi(r_t, r_i)}}$$

- Formulate as K-class classification
 - Use an ordinary model and train it to predict the soft label

Diaz-Maarthe, Soft Labels for Ordinal Regression, CVPR2019

Metric learning

- The set of classes to recognize is not closed but open
 - Aka. similarity learning,
 distance (metric) learning
 - E.g., Face verification; in a border control, a novel person's face needs to be matched against a passport picture
- We wish to learn a feature space suitable for the task

[Liu+, SphereFace, 2017]

Metric learning: two approaches

 A pair of samples of the same class should be mapped to close points, while those of different classes should be mapped distant points

Formulated as multi-class classification but with slightly different formulation

 Intra-class dispersion should be minimized, while inter-class dispersion should be maximized

Triplet loss:

$$L = ||f(x_a) - f(x_p)||_2^2 - ||f(x_a) - f(x_n)||_2^2$$

Contrastive loss:

$$L = \begin{cases} ||f(x_i) - f(x_j)||_2^2, & \text{if } i \text{ and } j \text{ same identity} \\ \max(0, m - ||f(x_i) - f(x_j)||_2)^2, & \text{otherwise} \end{cases}$$

[Deng+, ArcFace, 2019]

Overview of various networks

Feed-forward nets

Graphs

Convolutional nets (ID, 2D, 3D)

Supervised

Unsupervised

Fixed-size inputs

Graph neural nets

Variable-size inputs

Sets

nput data

Sequences Self-attention nets (Transformer)

Recurrent nets

Auto-encoders

Boltzmann machines

GANs

Variational AEs

Deterministic

Probabilistic