
12. Machine learning I

• Regression

• Overfitting

• Classification

• Example: Handwritten digit recognition

• Support vector machines (SVMs)

48

Regression

• Suppose we are given N pairs of a vector x and a scalar d

• We wish to predict d for a new input x
• x, called an independent variable, is observation used for predicting

• d, called a dependent variable, is the target, or the desired value to predict

• Toward this goal, we consider a function that approximately satisfies

• You can use any arbitrary (analytical) function for y(x)

Fitting polynomial functions

• Consider fitting a n-order polynomial func., instead of a linear func.

considered earlier

• polyfit performs this

• E.g., You can fit a linear func. as follows, instead of using pinv

• E.g., 3rd-order polynomial function

50

>> p=pinv(X)*y;

>> p=polyfit(x,y,1);

>> p=polyfit(x,y,3)

ans =

-2.2455 3.8778 -1.3517 0.4603

Fitting polynomial functions: an example

51

>> x=rand(10,1);

>> p0=[1.0,2.0,3.0,4.0];

>> y=p0(1)*x.^3+p0(2)*x.^2+p0(3)*x+p0(4)+0.2*randn(10,1);

>> plot(x,y,'o')

>>

>> hold on

>> xx=0:0.01:1;

>> yy=p0(1)*xx.^3+p0(2)*xx.^2+p0(3)*xx+p0(4);

>> plot(xx,yy)

>>

>> p=polyfit(x,y,3);

>> plot(xx,polyval(p,xx))

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3

4

5

6

7

8

9

10

 (0)

 (2)

 (2)

 (1)

 (1)

 (0)

Data are synthesized
here for the purpose of
explanation

Overfitting (also called overtraining)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

52

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

• If you fit 1st, 3rd, 5th, and 6th-order funcs to seven data points…

• Models with excessively large degrees of freedom can explain data
perfectly even including their noises, which is totally meaningless!

1st order (a line) 3rd-order

5th-order 6th-order

Classification

• Consider a variable x belonging to one of K classes

• Classification = assigning an input x with one of K class labels

• E.g., x is an image of a digit; we wish to answer what digit it is

• Supposing that N pairs of input x and its true class label d are
given

we wish to predict which class a new input x belongs to

0,1,2,3,4,5,6,7,8,9

Example: Handwritten digit recognition

• We use MNIST, a famous dataset of handwritten digit recognition

http://yann.lecun.com/exdb/mnist/

• Download and unzip the following file from the course page

mnist-data.zip

• We use the following two files today:

t10k-images-idx3-ubyte & t10k-labels-idx1-ubyte

• We use support vector machines (SVMs) for classification

• For this purpose, we use liblinear, a software library of SVM

54

Installing liblinear, a software library for SVM

• liblinear

• One of the most popular libraries in machine learning created by
Machine Learning Group at National Taiwan University

• Download files from the URL:

• https://www.csie.ntu.edu.tw/~cjlin/liblinear

• Extract the downloaded file and change the current directory to
liblinear-x.xx/matlab

• cd /Users/xxxx/Octave/liblinear-2.11/matlab

• Run make.m

• >> make

• Add the folder to search paths

• >> addpath(‘/Users/xxxx/Octave/liblinear-2.11/matlab’)

55

https://www.csie.ntu.edu.tw/~cjlin/liblinear

Support vector machines (SVMs) (1/2)*

• Consider two-class classification：

• A set of samples are given：

• We employ the following method for classification:

• w, called weights, is a parameter to be determined

• Consider determining w as follows:
• Known as a hard-margin SVM

where

Minimize

Support vector machines (SVMs) (2/2)*

• We consider two parallel planes separating data points correctly into
two corresponding classes that have the maximum distance

• For simplicity we assume here that the data points can be separated by a
plane (called linearly separable)

• We then choose the parallel plane in the exact middle of the two parallel
plane; we use its parameters w0 and w

• Why do we do this?  It will be safe to choose the plane having the
maximum distances to the nearest data points for the purpose of classifying
new inputs x’s correctly

Minimize

&

Classification of multiple classes*

• Two-class classifier is trained for each class to distinguish it from
the others

• Called the one-versus-the-rest classifier

1. kth model yk(x) is trained to classify class k and other classes

2. Regarding the output of each model as score of the model, we
classify an input sample to the class with the largest score

TVsChairs

Tables Sofas

• Loading images to Octave:
• File ‘test-images-idx3-ubyte’ contains 10,000 images of 28x28 pixels

• Skip the first four integers (32bits) and load the remaining numerical data
into a variable named data

• To display images, first reshape the image data into a tensor of appropriate
size and use imshow(matrix, [brightness_min, brightness_max])

• Loading labels to Octave:
• File ‘test-labels-idx1-ubyte’ contains labels of the images in the same order

• Skip the first two integers (32bits) and load the remaining integers into a
variable named label

Reading data from MNIST files

59

>> fid=fopen(‘t10k-images-idx3-ubyte‘,‘r‘,‘b‘);

>> fread(fid,4,‘int32‘)

>> data=fread(fid,[28*28,10000],‘uint8‘);

>> fclose(fid);

>> img=reshape(data,28,28,10000);

>> imshow(img(:,:,1)‘,[0,255])

>> imshow(img(:,:,100)‘,[0,255])

>> fid=fopen(‘t10k-labels-idx1-ubyte‘,‘r‘,‘b‘);

>> fread(fid,2,‘int32‘)

>> label=fread(fid,10000,‘uint8‘); Check the contents of this variable

Training and testing a classifier

• Train a classifier using, say, 5,000 samples (images) from the
data

• Train a model (SVM) using samples with indices 1,…,5000:

• Evaluate the performance of the classifier using the remaining
samples

• Test the model using samples with indices 5001,…,6000:

60

>> tr_label = label(1:5000);

>> tr_data = data(:,1:5000);

>> model = train(tr_label,sparse(tr_data)‘);

...

Objective value = -0.081903

nSV = 910

>> te_label = label(5001:6000);

>> te_data = data(:,5001:6000);

>> pred_label = predict(te_label,sparse(te_data)‘,model)

Accuracy = 84.6% (846/1000)

pred_label =

2

3

...

Status of training, which you can
ignore (as long as the training
went well)

Classification accuracy for the input
1,000 samples is shown

Predicted labels for the 1,000 samples;
Only in older Octave versions: note that the numbers do not
correspond to the true digits; these numbers correspond to the
indices of model.Label, which stores the true labels of digits

Visualization of weights*

• predict performs the following computation

• Visualize the trained weights as images

• Can you tell where in the image the model looks at to classify each
digit?

61

>> for i=1:10,model.w(i,:)*reshape(te_data(:,4),28*28,1)+model.bias,end
ans = -5.3081
...
...
ans = -17.245
ans = 2.5717
...

>> te_label(4)
ans = 6
>> model.Label
ans =

5
0
4
1
9
2
3
6
7
8

>> figure
>> for i=1:10,subplot(2,5,i),imshow(reshape(model.w(i,:),28,28),[min(model.w(i,:)),max(model.w(i,:))]),end

5 0 4 1 9

2 3 6 7 8

The order of weights is specified
by model.Label

Exercise 12.1 (Make the model recognize your handwritten digit)

• Create an image of 28x28 pixels, draw your favorite digit in it, and save
it to a file, by using, say, Paint of Windows

• Use the model we trained earlier to recognize the digit

• If the correct result is not obtained, redraw a digit and predict again

62

>> sample = imread(‘a_number_I_wrote.png‘);

>> sample = mean(sample,3);

>> predict([2], sparse(reshape(sample‘,1,28*28)), model)

Accuracy = 100% (1/1)

ans = 2

Convert your image into grayscale if it is a color image

28 pixels

2
8
 p

ix
e
ls Black

background
and white
foreground

True label

Predicted label; this is correct!

