12. Machine learning I

« Regression

Overfitting

Classification

Example: Handwritten digit recognition
Support vector machines (SVMs)

Regression

« Suppose we are given N pairs of a vector X and a scalar d
{x,}(n=1,...,N) {d,}(n=1,...,N)

« We wish to predict d for a new input x
« X, called an independent variable, is observation used for predicting
« d, called a dependent variable, is the target, or the desired value to predict

« Toward this goal, we consider a function that approximately satisfies
Y(Xn) ~ dn

« You can use any arbitrary (analytical) function for y(x)

d y

8

Fitting polynomial functions

« Consider fitting a n-order polynomial func., instead of a linear func.
considered earlier

Y = ag+ a1z + asx® + - - apz”

N
§£:|MH — (ag + a1m; + asx; + - apz})||* — min
i=1

« polyfit performs this
« E.g., You can fit a linear func. as follows, instead of using pinv

>> p=polyfit(x,y,1);
>> p=pinv (X) *y;

« E.g., 3"-order polynomial function

>> p=polyfit(x,vy,3)
ans =
-2.2455 3.8778 -1.3517 0.4603

as as aj ao

Fitting polynomial functions: an example

10

Data are synthesized

>> x=rand(10,1); here for the purpose of
>> p0=[1.0,2.0,3.0,4.0]; explanation
>> y=p0 (1) *x."3+p0 (2) *x."2+p0 (3) *x+p0(4) +0.2*randn (10, 1) ;
>> plot(x,y,'o')‘é-(O)
>>
>> hold on
>> xx=0:0.01:1;
>> yy=p0 (1) *xx."34+p0 (2) *xx."2+p0 (3) *xx+p0 (4) ;
>> plot (xx,yy) € (1)
>>
>> p=polyfit(x,y,3);
>> plot (xx,polyval (p, xx)) é.(Z)
10
(2)
(1) - l
,////// f 8 %
& (0) 7
_— 6 L
_ B \ /////

51

Overfitting (also called overtraining)

« If you fit 1st, 3rd, 5th and 6t-order funcs to seven data points:-

« Models with excessively large degrees of freedom can explain data
perfectly even including their noises, which is totally meaningless!

1 1 T
0.8 1 0.8 7
o_ [e)
0.6 o 0.6 o
(o] (o]
0.4 © 0.4 o
[¢] [¢]
0.2 0.2
o [e]
0F 0
o O
0.2 0.2
0.4 I I I I I ~0.4 I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
- rd_ d
1st order (a line) 3rd-order
1 T T T T T T T T T 1 T T ‘ T [T T T I T ‘\ T T
| N
0.8 & 0.8 ‘ ‘ ‘ “ 51
0.6 © 0.6 ‘ “ &) |
© ‘ ‘ +
0 © 0.4 | 0 ‘ ‘\
| \
o | ‘ |
0.2 o 0.2 d) ‘ “
| ‘ | ‘
T ’ | | | |
I —
0.2 -0.2 | | “ ‘\
| | | | |
0.4 L L I L I ~0.4 L L L I L L I I | I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 "o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5th-order 6th-order 52

Classification

« Consider a variable x belonging to one of K classes

 Classification = assigning an input X with one of K class labels
« E.g., X is an image of a digit; we wish to answer what digit it is

>

X

—> 0,1/2,3,4,5,6,7,8,9

» Supposing that N pairs of input x and its true class label d are
given

(x,}n=1,....N) {d}n=1,...,N)

we wish to predict which class a new input x belongs to

Example: Handwritten digit recognition

« We use MNIST, a famous dataset of handwritten digit recognition

http://yann.lecun.com/exdb/mnist/

« Download and unzip the following file from the course page

mnist-data.zip

« We use the following two files today:

t10k-images-idx3-ubyte & tl10k-labels-idxl-ubyte

« We use support vector machines (SVMs) for classification
« For this purpose, we use /iblinear, a software library of SVM

54

Installing /iblinear, a software library for SVM

liblinear

« One of the most popular libraries in machine learning created by
Machine Learning Group at National Taiwan University

Download files from the URL:
e https://www.csie.ntu.edu.tw/~cjlin/liblinear

Extract the downloaded file and change the current directory to
liblinear-x.xx/matlab

e cd /Users/xxxx/Octave/liblinear-2.11/matlab

Run make.m
e >> make

Add the folder to search paths
* >> addpath ('/Users/xxxx/Octave/liblinear-2.11/matlab’)

https://www.csie.ntu.edu.tw/~cjlin/liblinear

Support vector machines (SVMs) (1/2)*

« Consider two-class classification: d,, =1 or —1

A set of samples are given : (x1,d1), (x2,d2), -, (xN,dN)

We employ the following method for classification:
1 ifu(x) >0
y(x) = { —1 otherwise

where u(x,w) =wq+ wir1 + - +wrr; = wo + W' x

w, called weights, is a parameter to be determined
Consider determining w as follows:

Minimize ||w]|| subject to d,(wo+w'x)>1

Support vector machines (SVMs) (2/2)*

« We consider two parallel planes separating data points correctly into
two corresponding classes that have the maximum distance

« For simplicity we assume here that the data points can be separated by a
plane (called linearly separable)

« We then choose the parallel plane in the exact middle of the two parallel
plane; we use its parameters wy and w
« Why do we do this? - It will be safe to choose the plane having the

maximum distances to the nearest data points for the purpose of classifying
new inputs X’s correctly

wo + wi x=1
wo+w'x=0
wo + w'x=—1
&
K Minimize ||w| subject to d,(wo+w'x)>1

Classification of multiple classes*

« Two-class classifier is trained for each class to distinguish it from
the others

« Called the one-versus-the-rest classifier

1. k™ model y,(x) is trained to classify class k and other classes

2. Regarding the output of each model as score of the model, we
classify an input sample to the class with the largest score

argmax y (x)
k

Chairs

Reading data from MNIST files

« Loading images to Octave:

File ‘test-images-idx3-ubyte’ contains 10,000 images of 28x28 pixels

« Skip the first four integers (32bits) and load the remaining numerical data

into a variable named data

« To display images, first reshape the image data into a tensor of appropriate
Size and use imshow (matrix, [brightness min, brightness max])

>>
>>
>>
>>
>>
>>
>>

fid=fopen(‘tl0k-images-idx3-ubyte?', ‘r', ‘b');
fread(fid, 4, Yint32")

data=fread(fid, [28*%28,10000], ‘uint8?) ;
fclose (fid) ;

img=reshape (data, 28,28,10000) ;

imshow (img(:,:,1) ', [0,255])

imshow (img(:, :,100) ', [0,255])

« Loading labels to Octave:
« File ‘test-labels-idx1-ubyte’ contains labels of the images in the same order

« Skip the first two integers (32bits) and load the remaining integers into a
variable named label

>>
>>
>>

fid=fopen(‘tl0k-labels-idxl-ubyte?', ‘r', ‘b');
fread(fid, 2, Yint32?Y)
label=fread(£id, 10000, ‘uint8%'); . — Check the contents of this variable

Training and testing a classifier

« Train a classifier using, say, 5,000 samples (images) from the
data
« Train a model (SVM) using samples with indices 1,---,5000:

>> tr label = label (1:5000);
>> tr data = data(:,1:5000);
>> model = train(tr label, sparse(tr data)‘);

Objective value = -0.081903 Status of training, which you can

nsSv = 910 «—— ignore (as long as the training
went well)

« Evaluate the performance of the classifier using the remaining
samples
« Test the model using samples with indices 5001,---,6000:

>> te label = label(5001:6000);

>> te data = data(:,5001:6000);

>> pred label = predict(te label, sparse(te data) ‘,model)
Accuracy = 84.6% (846/1000)

pred label = Classification accuracy for the input
2 1,000 samples is shown
2 \ Predicted labels for the 1,000 samples;

Only in older Octave versions: note that the numbers do not
correspond to the true digits; these numbers correspond to the
indices of model.Label, which stores the true labels of digits 60

Visualization of weights*

. : : te_label(4
« predict performs the following computation e
>> model.Label
>> for i=1:10,model.w(i,:)*reshape(te_data(:,4),28*28,1)+model.bias,end e

ans = -5.3081
ans = -17.245

ans = 2.5717

ONOWNOURFRI-~OWUL

« Visualize the trained weights as images
« Can you tell where in the image the model looks at to classify each
digit?

>> figure
>> for i=1:10,subplot(2,5,i),imshow(reshape(model.w(i,:),28,28),[min(model.w(i,:)),max(model.w(i,:))]),end

The order of weights is specified
by model.Label

61

Exercise 12.1 (Make the model recognize your handwritten digit)

« Create an image of 28x28 pixels, draw your favorite digit in it, and save
it to a file, by using, say, Paint of Windows

B L e . &

H| Al | —
B0 iE ¢ 7 sow

28 pixels

{k
v

+

2 1Y) Black
2 background
- o and white
Q foreground

« Use the model we trained earlier to recognize the digit
« If the correct result is not obtained, redraw a digit and predict again

>> sample = imread(‘a number I wrote.png?);
>> sample = mean(sample,3); Convert your image into grayscale if it is a color image
True label

>> predict ([2], sparse(reshape (sample‘',1,28%*28)), model)
Accuracy = 100% (1/1)
ans = 2

Predicted label; this is correct!

