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Detailed derivation of the MF and BP algo-
rithms
We show here detailed derivation of the new MF and

BP algorithms. In our main paper, we present simplified
derivation which needs an assumption that the number S i
of mixtures is the same for all sites, i.e., S i = S for any
i. In what follows, we present complete derivation of the
two algorithms which do not require this assumption; sev-
eral equations that are omitted in the main paper are also
given. Our derivation follows that of conventional MF and
BP algorithms in [2].

Derivation of the new MF algorithm
As mentioned in our main paper, MF and BP algorithms

find P that minimizes the following free energy:

F[P] = 〈E〉P − S [P], (30)

where the first term is the expectation defined as 〈E〉P =∫
P(x)E(x)dx, and the second term is the entropy of P, i.e.,

S [P] = − ∫ P(x) ln P(x)dx.
The derivation of MF algorithms start with assuming that

the variable of each site i is independent of that of any other
site:

P(x) ≡
∏
i
pi(xi). (31)

Our approach is to represent pi(xi) by a mixture of S i rect-
angular densities as

pi(xi) =
S i∑
s=1
αsi h

s
i (xi), (32)

where αsi is a mixing weight and h
S
i (xi) is a component rect-

angular density; the former is defined such that for any i

S i∑
s=1
αsi = 1, (33)

and the latter is defined such that the supports of any pair
of the component densities do not overlap in the variable
space, which is expressed asXsi ∩Xti = ∅ using the notations
in our main paper.
Using Eqs.(31) and (32), 〈E〉P reduces as follows:

〈E〉P =
∑
i

∫
pi(xi) fi(xi)dxi

+
∑
(i, j)∈E

�
pi(xi)p j(x j) fi j(xi, x j)dxidx j

=
∑
i

∑
s
αsi

∫
fi(xi)hsi (xi)dxi

+
∑
(i, j)∈E

∑
s,t
αsiα

t
j

�
fi j(xi, x j)hsi (xi)h

t
j(x j)dxidx j

=
∑
i

∑
s
αsi f

s
i +
∑
(i, j)∈E

∑
s,t
αsiα

t
j f
st
i j . (34)

Although the calculation of the entropy of a mixture density
is in general intractable, owing to the introduced constraint
Xsi ∩ Xti = ∅, we can reduce S [P] as follows:

S [P] = −
∑
i

∑
s
αsi

∫
hsi (xi) ln

⎛⎜⎜⎜⎜⎜⎝
∑
s′
αs
′
i h

s′
i (xi)
⎞⎟⎟⎟⎟⎟⎠ dxi

= −
∑
i

∑
s
αsi

∫
hsi (xi) ln

(
αsi h

s
i (xi)
)
dxi

= −
∑
i

∑
s
αsi lnα

s
i −
∑
i

∑
s
αsi

∫
hsi (xi) ln h

s
i (xi)dxi

= −
∑
i

∑
s
αsi lnα

s
i +
∑
i

∑
s
αsi B

s
i . (35)

Using Eqs.(34) and (35), Eq.(30) is rewritten as

FMF[α] =
∑
i

∑
s
αsi ( f

s
i − Bsi )

+
∑
(i, j)∈E

∑
s,t
αsiα

t
j f
st
i j +
∑
i

∑
s
αsi lnα

s
i .
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We then wish to find P minimizing this free energy. The
minimization is performed with respect to αsi ’s under the
constraint of Eq.(33). Thus, introducing Lagrange multipli-
ers γi, we consider minimizing

JMF = FMF[α] +
∑
i
γi

⎛⎜⎜⎜⎜⎜⎝1 −
∑
s
αsi

⎞⎟⎟⎟⎟⎟⎠ . (36)

The calculation of ∂JMF/∂αsi = 0 followed by elimination
of γi’s yields the following fixed point equation:

αsi ∝ exp
⎡⎢⎢⎢⎢⎢⎢⎣−
⎛⎜⎜⎜⎜⎜⎜⎝( f si − Bsi ) +

∑
j∈Ni

∑
t
f sti j α

t
j

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ . (37)

Our MF algorithm iteratively updates αsi ’s according to this
equation.

Derivation of the new BP algorithm
The derivation of BP algorithms starts with assuming

P(x) =
∏
i j pi j(xi, x j)∏
i pi(xi)zi−1

. (38)

Using this, 〈E〉P reduces to

〈E〉P =
∑
i

∫
pi(xi) fi(xi)dxi

+
∑
(i, j)∈E

�
pi j(xi, x j) fi j(xi, x j)dxidx j. (39)

Similarly, S [P] reduces to

S [P] =
∑
i
(zi − 1)

∫
pi(xi) ln pi(xi)dxi

−
∑
(i, j)∈E

�
pi j(xi, x j) ln pi j(xi, x j)dxidx j. (40)

(The free energy consisting of Eqs.(39) and (40) is called
the Bethe Free Energy.)
Our approach is to represent pi and pi j as

pi(xi) =
S i∑
s=1
αsi h

s
i (xi), (41a)

pi j(xi, x j) =
S i∑
s=1

S j∑
t=1
αsti jh

s
i (xi)h

t
j(x j), (41b)

where αsi and α
st
i j are the parameters to be determined such

that they satisfy the following three constraints:∑
s
αsi = 1, (42a)

∑
s,t
αsti j = 1, (42b)

∑
s
αsti j = α

t
j. (42c)

By substituting Eqs.(41) into Eq.(39), we have

〈E〉P =
∑
i

∑
s
αsi

∫
fi(xi)hsi (xi)dxi

+
∑
(i, j)∈E

∑
s,t
αsti j

�
fi j(xi, x j)hsi (xi)h

t
j(x j)dxidx j

=
∑
i

∑
s
αsi f

s
i +
∑
(i, j)∈E

∑
s,t
αsti j f

st
i j . (43)

To derive the entropy S [P], we calculate the entropies of pi
and pi j, respectively. Using Eq.(41a), the (negative) entropy
of pi is written as∫

pi(xi) ln pi(xi)dxi =
∑
s
αsi lnα

s
i −
∑
s
αsi B

s
i , (44)

where we use Bsi defined in Eq.(16) in our main paper. Sim-
ilarly, Using Eq.(41b), that of pi j is written as

pi j(xi, x j) ln pi j(xi, x j)dxidx j

=
∑
s,t
αsti j

�
hsi (xi)h

t
j(x j) ln

⎛⎜⎜⎜⎜⎜⎜⎝
∑
s′,t′
αs
′t′
i j h

s′
i (xi)h

t′
j (x j)

⎞⎟⎟⎟⎟⎟⎟⎠ dxidx j

=
∑
s,t
αsti j

�
hsi (xi)h

t
j(x j) ln

(
αsti jh

s
i (xi)h

t
j(x j)
)
dxidx j

=
∑
s,t
αsti j lnα

st
i j −
∑
s,t
αsti j(B

s
i + B

t
j). (45)

Using these, the entire entropy S [P] is given as

S [α] =
∑
i
(zi − 1)

∑
s
αsi lnα

s
i −
∑
i
(zi − 1)

∑
s
αsi B

s
i

−
∑
(i, j)∈E

∑
s,t
α
i j
st lnα

i j
st +
∑
(i, j)∈E

∑
s,t
αsti j(B

s
i + B

t
j). (46)

Then, using Eq.(43) and Eq.(46), F[P] is rewritten as

FBP[α] =
∑
i

∑
s
αsi ( f

s
i +(zi−1)Bsi )+

∑
(i, j)∈E

∑
s,t
αsti j( f

st
i j −Bsi−Btj)

−
∑
i
(zi − 1)

∑
s
αsi lnα

s
i +
∑
(i, j)∈E

∑
s,t
αsti j lnα

st
i j. (47)

To simplify the expression, we define

Êsti j ≡ ( f sti j − Bsi − Btj)
+ ( f si + (zi − 1)Bsi ) + ( f tj + (z j − 1)Btj) (48a)

Êsi ≡ f si + (zi − 1)Bsi . (48b)

The substitution of them into Eq.(47) yields

FBP[α] =
∑
(i, j)∈E

∑
s,t
αsti j(Ê

st
i j + lnα

st
i j)

−
∑
i
(zi − 1)

∑
s
αsi (Ê

s
i + lnα

s
i ). (49)



We then minimize Eq.(49) with respect to αsi ’s and α
st
i j’s

under the three constraints of Eqs.(42). By introducing La-
grange multipliers λti j, γi, and γi j, we consider minimizing

JBP ≡ FBP[α]

+
∑
(i, j)∈E

∑
t
λti j

⎛⎜⎜⎜⎜⎜⎝αtj −
∑
s
αsti j

⎞⎟⎟⎟⎟⎟⎠ +
∑
(i, j)∈E

∑
s
λsji

⎛⎜⎜⎜⎜⎜⎝αsi −
∑
t
αsti j

⎞⎟⎟⎟⎟⎟⎠

+
∑
i
γi

⎛⎜⎜⎜⎜⎜⎝1 −
∑
s
αsi

⎞⎟⎟⎟⎟⎟⎠ +
∑
(i, j)∈E

γi j

⎛⎜⎜⎜⎜⎜⎜⎝1 −
∑
s,t
αsti j

⎞⎟⎟⎟⎟⎟⎟⎠ . (50)

The calculation of ∂JBP/∂αsti j = 0 yields

lnαsti j = −Êsti j + λti j + λsji + γi j − 1. (51)

Similarly, the calculation of ∂JBP/∂αsi = 0 yields

(zi − 1)(lnαsi + 1) = −(zi − 1)Êsi +
∑
j∈Ni
λsji + γi. (52)

Introducing messages mtk j, are redefined the Lagrange mul-
tiplier λti j as

λti j = ln
∏
k∈N j\i

mtk j. (53)

Then, by substituting Eq.(53) into Eqs.(51) and (52), we
have

αsti j ∝ ψsti jφsiφtj
∏
k∈Ni\ j

mski
∏
l∈N j\i

mtl j, (54a)

αsi ∝ φsi
∏
k∈Ni

mski. (54b)

Substituting Eqs.(54a) and (54b) into Eq.(42c), we have the
following updating rule of BP:

mti j ←
∑
s
φsiψ

st
i j

∏
k∈Ni\ j

mski.

Additional experimental results
We show here additional results of stereo matching ob-

tained by the proposed method. Choosing three images
from the Middlebury MRF library, Cloth1, Rocks1, and
Flowerpots, we applied the proposed method to them in
a similar manner to Aloe shown in the main paper. Fig.6
shows their input images (including Aloe) along with their
ground truths; the results obtained by the MAP inference
(the α-expansion algorithm [1]) are also shown for compar-
ison with our results.
Figs.7–12 show the results formatted in the same way

as Aloe in our main paper. Similar to Aloe, it is seen
that the mixture densities depict the marginal densities in

a finer way with the increasing number of blocks; as com-
pared with the results of the fixed discretization, those of
the dynamic discretization draw much finer details even for
smaller number of blocks. It is seen from the estimated dis-
parity maps that those of the dynamic discretization tend to
be smoother than the fixed discretization, which well agrees
with the observation on the estimated marginal densities.
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Figure 6. Four datasets used in our experiments: Aloe, Cloth1, Rocks1, and Flowerpots. Upper row: Input left images. Middle row: Ground
truths. Lower row: Disparity maps estimated by the α-expansion algorithm.

Blocks=8 10 12 14 16 Fixed&uniform(16)
Figure 7. Results for Cloth1 of the MF algorithm with the dynamic discretization. Upper row: Disparity maps. Lower row: The mixture of
rectangular densities approximating the marginal density at the site of the image pixel (100, 100).

Blocks=8 10 12 14 16 Fixed&uniform(16)
Figure 8. Results for Cloth1 of the BP algorithm with the dynamic discretization. Upper row: Disparity maps. Lower row: The mixture of
rectangular densities approximating the marginal density at the site of the image pixel (100, 100).



Blocks=8 10 12 14 16 Fixed&uniform(16)
Figure 9. Results for Rocks1 of the MF algorithm with the dynamic discretization. Upper row: Disparity maps. Lower row: The mixture
of rectangular densities approximating the marginal density at the site of the image pixel (100, 100).

Blocks=8 10 12 14 16 Fixed&uniform(16)
Figure 10. Results for Rocks1 of the BP algorithm with the dynamic discretization. Upper row: Disparity maps. Lower row: The mixture
of rectangular densities approximating the marginal density at the site of the image pixel (100, 100).

Blocks=8 10 12 14 16 Fixed&uniform(16)
Figure 11. Results for Flowerpots of the MF algorithm with the dynamic discretization. Upper row: Disparity maps. Lower row: The
mixture of rectangular densities approximating the marginal density at the site of the image pixel (100, 100).



Blocks=8 10 12 14 16 Fixed&uniform(16)
Figure 12. Results for Flowerpots of the BP algorithm with the dynamic discretization. Upper row: Disparity maps. Lower row: The
mixture of rectangular densities approximating the marginal density at the site of the image pixel (100, 100).


