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Detailed derivation of the MF and BP algo-
rithms

We show here detailed derivation of the new MF and
BP algorithms. In our main paper, we present simplified
derivation which needs an assumption that the number S;
of mixtures is the same for all sites, i.e., §; = S for any
i. In what follows, we present complete derivation of the
two algorithms which do not require this assumption; sev-
eral equations that are omitted in the main paper are also
given. Our derivation follows that of conventional MF and
BP algorithms in [2].

Derivation of the new MF algorithm

As mentioned in our main paper, MF and BP algorithms
find P that minimizes the following free energy:

F[P] = (E)p - S[P], (30)

where the first term is the expectation defined as (E)p =
f P(x)E(x)dx, and the second term is the entropy of P, i.e.,
S[P] = - [ P(x) In P(x)dx.

The derivation of MF algorithms start with assuming that
the variable of each site 7 is independent of that of any other
site:

P(x) = ﬂpi(xi). 31)

Our approach is to represent p;(x;) by a mixture of S; rect-
angular densities as
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where @] is a mixing weight and hlS (x;) is a component rect-
angular density; the former is defined such that for any i

Si
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and the latter is defined such that the supports of any pair
of the component densities do not overlap in the variable
space, which is expressed as X! N X! = 0 using the notations
in our main paper.

Using Egs.(31) and (32), (E)p reduces as follows:
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Although the calculation of the entropy of a mixture density
is in general intractable, owing to the introduced constraint
X! N X! = 0, we can reduce S[P] as follows:
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Using E(;s.(3S4) and (35), 1~:lq.(350) is rewritten as
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We then wish to find P minimizing this free energy. The
minimization is performed with respect to @;’s under the
constraint of Eq.(33). Thus, introducing Lagrange multipli-
ers y;, we consider minimizing

Jur = Furl@] + 3y, [1 - a;']. (36)

The calculation of dJvr/dai = 0 followed by elimination
of ;s yields the following fixed point equation:

((f B)+ZZJ,“’H. (37)
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Our MF algorithm iteratively updates a:’s according to this
equation.

Derivation of the new BP algorithm
The derivation of BP algorithms starts with assuming
Hij pij(xi, xj)
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P(x) =

Using this, (E)p reduces to
(E)p = Z f pi(xi) fi(x:)dx;

ffpu(xl’xj)fl/(xuxj)dxldx/ (39
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Similarly, S[P] reduces to
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(The free energy consisting of Eqs.(39) and (40) is called
the Bethe Free Energy.)
Our approach is to represent p; and p;; as

pix) = Z ah}(x), (41a)

Pijlesi,x)) = Z Z A (x),  (41b)
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where o and o are the parameters to be determined such
that they satlsfy the following three constraints:

Z o =1, (42a)
Dlap=1, (42b)
st

Dlay=d, (42¢)

By substituting Egs.(41) into Eq.(39), we have
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To derive the entropy S[P], we calculate the entropies of p;
and p,;, respectively. Using Eq.(41a), the (negative) entropy
of p; is written as

f pilx) In pi(x)dx; = Za/ Ina —Za;B;, (44)

where we use B; defined in Eq.(16) in our main paper. Sim-
ilarly, Using Eq.(41b), that of p;; is written as

p,—,—(x,—, X ) In p,-j(x,-, xj)dx,-dxj

ffh (x,)h (x;)In (Z a‘ t/h (xl)h’ (xj)] dx;dx;
af} ff h‘;(xi)h;(xj) ln l‘j’hl (x)H, (xj)) dx;dx;
= Z @ Inal - Z @l(B; + BY). (45)

Using these, the entire entropy S[P] is given as

Sle] = Z(z, I)Za Ina! - Z(z, - 1)2chv
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Then, using Eq.(43) and Eq.(46), F[P] is rewritten as
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To simplify the expression, we define
EY = (f - B} - B)
+(ff + (@ = DB) +(fj +(z; - DB)  (482)
Ef=f +(z - DB, (48b)
The substitution of them into Eq.(47) yields

D0 alEy + )

(i,))e& s,

=D @ =D al(E +Ina)). (49)

Fgpla] =



We then minimize Eq.(49) with respect to «;’s and afjt.’s
under the three constraints of Eqgs.(42). By introducing La-
grange multipliers A’ 1 Vi and y;;, we consider minimizing
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The calculation of 8Jgp /Ba/f; = 0 yields
Inaff = —E3 + A, + 25, + i, — 1. (51)
Similarly, the calculation of dJgp/da; = 0 yields

(z-Dnaf + 1) = =@ - DE + ) Xi+y (52)
JeN;

Introducing messages mj(j, are redefined the Lagrange mul-
tiplier /lij as

A= [ ] mi, (53)
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Then, by substituting Eq.(53) into Eqgs.(51) and (52), we
have
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Substituting Eqgs.(54a) and (54b) into Eq.(42c), we have the
following updating rule of BP:
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Additional experimental results

We show here additional results of stereo matching ob-
tained by the proposed method. Choosing three images
from the Middlebury MRF library, Clothl, Rocksl, and
Flowerpots, we applied the proposed method to them in
a similar manner to Aloe shown in the main paper. Fig.6
shows their input images (including Aloe) along with their
ground truths; the results obtained by the MAP inference
(the a-expansion algorithm [1]) are also shown for compar-
ison with our results.

Figs.7-12 show the results formatted in the same way
as Aloe in our main paper. Similar to Aloe, it is seen
that the mixture densities depict the marginal densities in

a finer way with the increasing number of blocks; as com-
pared with the results of the fixed discretization, those of
the dynamic discretization draw much finer details even for
smaller number of blocks. It is seen from the estimated dis-
parity maps that those of the dynamic discretization tend to
be smoother than the fixed discretization, which well agrees
with the observation on the estimated marginal densities.
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Figure 6. Four datasets used in our experiments: Aloe, Clothl, Rocks1, and Flowerpots. Upper row: Input left images. Middle row: Ground
truths. Lower row: Disparity maps estimated by the a@-expansion algorithm.
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Figure 7. Results for Cloth1 of the MF algorithm with the dynamic discretization. Upper row: Disparity maps. Lower row: The mixture of
rectangular densities approximating the marginal density at the site of the image pixel (100, 100).
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Figure 8. Results for Clothl of the BP algorithm with the dynamic discretization. Upper row: Disparity maps. Lower row: The mixture of
rectangular densities approximating the marginal density at the site of the image pixel (100, 100).
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Figure 9. Results for Rocks! of the MF algorithm with the dynamic discretization. Upper row: Disparity maps. Lower row: The mixture
of rectangular densities approximating the marginal density at the site of the image pixel (100, 100).
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Figure 10. Results for Rocks! of the BP algorithm with the dynamic discretization. Upper row: Disparity maps. Lower row: The mixture
of rectangular densities approximating the marginal density at the site of the image pixel (100, 100).
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Figure 11. Results for Flowerpots of the MF algorithm with the dynamic discretization. Upper row: Disparity maps. Lower row: The
mixture of rectangular densities approximating the marginal density at the site of the image pixel (100, 100).
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Figure 12. Results for Flowerpots of the BP algorithm with the dynamic discretization. Upper row: Disparity maps. Lower row: The
mixture of rectangular densities approximating the marginal density at the site of the image pixel (100, 100).



