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Abstract

This paper proposes a method for estimating the
quantitative values of some attributes associated with
surface qualities of an object, such as glossiness and
transparency, from its image. Our approach is to learn
functions that compute such attribute values from the
input image by using training data given in the form
of relative information. To be specific, each sample of
the training data represents that, for a pair of images,
which is greater in terms of the target attribute. The
functions are learned based on leaning to rank. This
approach enables us to deal with natural images, which
cannot be dealt with in previous works, which are based
on CG synthesized images for both training and testing.
We created data sets using the Flickr Material Database
for four attributes of glossiness, transparency, smooth-
ness, and coldness, and learn the functions representing
the values of these attributes. We present experimental
results that the learned functions show very promising
performances in the estimation of the attribute values.

1. Introduction

In this paper, we consider the problem of recogniz-
ing the surface quality of an object from its imagery.
We will use the term surface quality to mean a group
of sensations that humans receive from the surface of
an object through vision and touch. It is firstly depen-
dent on the physical properties of the surface, such as
its material (e.g., metal, glass, plastic etc.), surface fin-
ish, softness, temperature, etc. It is also dependent on
the properties that might be difficult to physically de-
fine, such as “’feel” or ’touch” of the object surface. Al-
though such surface quality is the most closely related
to tactile sensations, humans appear to be able to fairly
accurately sense it only from visual inputs. This ability
is considered to play an important role in everyday life.

The mechanism of how these sensations are pro-
cessed in human brains remains mostly unclear, and is
being studied in the field of vision sciences [1, 2, 3].
Studying the surface quality is also important from an
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engineering (application) point of view, as it might help,
for example, analyze what constitutes photorealism of
images synthesized by CG, or improve the look and feel
of industrial products around us. Based on these mo-
tivations, researchers from brain science, psychology,
and computer vision have cooperatively started several
approaches recently.

In this study, we consider the problem of recogniz-
ing several attributes associated with the surface quality
of an object from its single image. Although surface
quality is a fairly abstract concept, as mentioned above,
we select several attributes that are considered to con-
tribute to the formation of the surface quality, such as
glossiness, roughness, transparency etc. We then call
them as surface-quality attributes, or simply attributes,
and regard them as the target of recognition. To be spe-
cific, choosing the attributes taking a continuous value,
we consider the problem of estimating the value of each
attribute from imagery.

There exist a few studies of methods for recogniz-
ing such surface-quality attributes from images. Dror
et al. [4] present a method that directly learns relations
between image features and several attributes and esti-
mate the attribute values for a given image. In the field
of vision science, there are a number of studies that in-
vestigates what kinds of cues biological vision uses to
recognize such attributes [1, 2] or analyzes what parts
of human brains are used to do this by using fMRI [3].

In the study of Dror et al. the images are synthesized
by CG, where some surface reflectance model such as
the Torrance-Sparrow model is chosen, and are used for
training and testing a classifier. The problem is then
formulated as estimating a particular parameter of the
chosen reflectance model, from a given image; the pa-
rameter is regarded as a surface-quality attribute itself.
This approach greatly simplifies the problem, as it is
easy to synthesize images of an object for which a cho-
sen attribute has an arbitrary value. This makes it pos-
sible to have a large number of pairs of an image and an
attribute that can be used for training the classifier.

However, this approach of using CG synthesized im-
ages has several problems.

Firstly, it can only deal with

simple re-



flectance/appearance models; thus, the resulting
images are simple, as well. In this approach, one has
to find a parameter in the assumed reflectance model
that is translatable to a surface-quality attribute. In the
case of complex models, which enables the synthesis
of photorealistic images, it is unclear to relate each
surface-quality attribute to which parameter of the
models.

Secondly, it is difficult to deal with surface-quality
attributes that are shared by different materials. Al-
though surface quality has a close connection to ma-
terials, it is natural to think of it as a concept defined at
a higher level than materials. For example, glossiness,
softness, etc. are general attributes that can be used for
all sorts of materials. In the case of CG synthesized im-
ages, it is hard to relate the parameters in two different
models for different materials, as each material tends to
need a particular reflectance model.

Thirdly, the approach lacks a direct relation between
what the trained classifier recognizes and what humans
recognize. The trained classifier merely recognizes a
parameter of the assumed reflectance model. It could
be significantly different from what humans recognize.

Based on these considerations, we consider the prob-
lem of recognizing surface qualities from natural im-
ages. In the case of natural images, we can no longer
create samples by simply varying parameters of re-
flectance models. A solution would be giving a value
to each sample by hand and creating a set of pairs of
an image and an attribute value, as is done in the stud-
ies of object recognition. However, it is quite hard for
us humans to answer an absolute value of a particular
attribute. This can be understood when considering a
scenario in which we are shown an image and asked to
answer its glossiness in the range of 0 to 100. Even if
we manage to do this, it will be necessary to normalize
the results to compensate for drifts within a person and
differences among individuals.

In this study, inspired by the work of Parikh and
Grauman [5], we propose to create training data by
ranking pairs of images in terms of the target attribute
and then train an attribute function which represents the
strength of the target attribute using the created samples.
To be specific, each training sample gives relative infor-
mation between a pair of images, that is, “image A is
greater than image B in terms of glossiness.” It is much
easier for us to make such a relative decision than to tell
an absolute value in terms of an attribute. We then train
an attribute function of the target attribute using meth-
ods of learning to rank. In this paper, we consider only
surface-quality attributes taking a continuous value, and
exclude those taking a binary value, such as either nat-
ural or man-made.
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2. Approach

2.1. Learning an Attribute Function from Rela-
tive Information

In this section, we describe how to learn an attribute
function f(x), which computes the strength of the tar-
get attribute of an object from its image, or strictly its
representation x as a feature. We use a set of relative in-
formation in terms of the target attribute between a pair
of images for learning an attribute function. The overall
procedure of learning is basically the same as Ranking-
SVM [6], which converts learning to rank based on rela-
tive information into a classification problem and trains
a function representing the ranking by SVM.

Let Z = {Iy,Io,...,I,} denote the set of training
images, and X = {x1, s, ..., &, } denote the set of fea-
ture vectors extracted from Z. Each feature vector x; is
a d-dimensional vector extracted from I; by using the
methods that will be described later. Let f : R — R
denote an attribute function of the target attribute, which
computes the strength of the attribute from a given fea-
ture vector x. Let O = {(s1,t1), (S2,%2); -, (S, tm) }
denote the set of relative information given as training
data. Each sample (s;,t;) indicates “I, is greater than
I, in terms of the attnbute” This implies that f should
satisfy the inequality

f(msj) > f<$t7) (1)

The goal of learning is to obtain f that satisfies as many
inequalities given by X and O as possible.

In this study, we use the following linear function for
the attribute function f:

flx)=w'x. 2)
Then Eq.(1) is rewritten as
w' (zy, —x4,) > 0. 3)

To find w that satisfies Eq.(3), we introduce slack vari-
ables ¢, ;’s and consider the following optimization
problem:
. 2
minfwl +C Y €,

(s,t)€O
s "Bt) Z 1- fs,b

4)

s.t. VO &4 >0, wT(m

This is the same problem as the one solved by LI1-
regularized L2-loss SVM. Thus, learning f based on X’
and O reduces to learning a linear binary classifier from
features {a:] =T, — Ty, T; = Ty; — Ty, }. We use
LIBLINEAR [7] to solve Eq (4)

J

2.2. Creation of training data

We use a part of Flickr Material Database [8] (FMD)
to create a data set for our experiments. FMD, which



Table 1. Recognition accuracies with various image features.

Neural SIFT-BoVW  SIFT-BoVW(dense)
SIFT- SIFT-BoVW  RGB-  Model and and
attributes BoVW (dense) BoVW in[1] RGB-BoVW RGB-BoVW
glossiness 0.78 0.77 0.57 0.74 0.69 0.73
transparency 0.77 0.78 0.66 0.75 0.81 0.81
smoothness 0.84 0.87 0.72 0.75 0.83 0.83
coldness 0.72 0.72 0.54 0.65 0.66 0.69

is created for the study of material recognition, con-
sists of 1000 images of ten different materials (100 for
each) that are collected from Flickr. We choose the
five materials: metal, glass, plastic, stone, and wood,
which gives 500 images in total. The backgrounds are
removed by using the segmentation masks supplied in
FMD and are not used in the subsequent feature extrac-
tion stage. These 500 images are split into two sets of
250 images, and one is used for training and the other
for testing.

For each set of 250 images, we manually created
sets of relative information by the following procedures:
(1) two images are randomly selected from the set and
shown to a respondent, (2) the respondent is asked to
answer which image is greater in terms of a particular
surface-quality attribute. The four attributes, glossiness,
transparency, smoothness, and coldness, are considered
in this study. The respondent is also allowed to choose
“impossible to rank”, when he or she thinks that the two
images are equal or, that it is irrelevant to rank with the
specified attribute. For each attribute, we created about
200 samples of such relative information for each of the
training and testing sets of 250 images.

It should be noted that we do not use the samples of
“impossible to rank”, as this is contrastive to the method
of [5] which uses the samples of equally ranked pairs
for training. Unlike the tasks considered in [5], in our
task, the samples of “impossible to rank’ do not always
mean two images are equal in terms of the attribute, they
could mean that the comparison of the two images is by
itself irrelevant. This is why we ignore the samples of
“impossible to rank”.

2.3. Image Features

It is expected that different types of image features
are effective for recognizing different surface-quality
attributes. For example, capturing highlight generated
by specular reflections should be effective to recognize
glossiness. Hence we test several types of image fea-
tures in our experiments to investigate which image fea-
ture is better to recognize each attribute. The image fea-
tures used are described as follows.

SIFT-BoVW Keypoints and their local descriptors
are extracted by SIFT [9] from a luminance image.
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They are quantized by the standard procedures of
BoVW [10] to form a histogram of the descriptors.
Then it is used as the global feature of the input im-
age. We employed this approach, since it is a baseline
method that is widely used for various image recogni-
tion tasks. It is expected that it can capture the high-
lights and textures of surfaces, as the SIFT descriptor is
based on the spatial derivatives of luminance images.

SIFT-BoVW (dense sampling) The image feature is
created in the same way as above except that the local
descriptors are densely sampled on a regular grid.

RGB-BoVW 6000 patches of 3 x 3 pixels are ran-
domly sampled on a RGB image, and their histogram
is created by BoVW in the 9-dimensional patch space.
Then it is used as an image feature.

Model of Neural Mechanism for encoding a skew-
ness Motoyoshi et al. reported that a skewness of a
luminance histogram is correlated with the perception
of surface glossiness, and proposed a model of the neu-
ral mechanism for approximately encoding it [1]. The
model is represented as a nonlinear filter composed of
linear filters, nonlinear functions and spatial pooling
processes. We apply it to an image, and use the his-
togram of the output as an image feature.

SIFT-BoVW and RGB-BoVW An image feature
is created by concatenating SIFT-BoVW and RGB-
BoVW features. Concatenated feature of SIFT-BoVW
(dense sampling) and RGB-BoVW is also used as an
image feature.

Combined Features SIFT-BoVW and RGB-BoVW
features are combined and used as an image feature.
The combined feature is simply crated by concatenat-
ing the two different features.

3. Experimental Results

For the four attributes, glossiness, transparency,
smoothness, and coldness, we evaluate the accuracies
of estimation of their values by the learned functions
with the image features described above. The estima-
tion accuracy is measured by the error rate, which is
obtained by dividing the number of samples for which
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Figure 1. Testing images ordered by learned attribute functions.

the ranking is correctly reproduced by the attribute val-
ues computed by f with the number of samples in the
testing data.

Tab.1 shows the result. The accuracies for the best
image feature are by far above 0.5 (the chance rate) for
each attribute. The results show that, as far as the fea-
tures we tested are concerned, SIFT-BoVW is the best
feature for the recognition of glossiness and coldness,
and SIFT-BoVW (dense sampling) is the best feature
for transparency, and the concatenated feature of SIFT-
BoVW and RGB-BoVW is the best for transparency.

Fig.1 shows selected ordered lists of testing images
sorted by the learned attribute functions of glossiness,
transparency, smoothness and coldness. It can be ob-
served that the images are ordered correctly with only a
few exceptions. The erroneous estimations are, for ex-
ample, the clearly opaque wooden object is ranked high
(4th) and the transparent glass horse is ranked medium
group in the list of transparency. These may be consid-
ered to be attributable to the fact that only simple image
features are used here or that the size of training data is
small.

4. Conclusion

In this paper we consider the problem of estimating
surface-quality attributes of an object such as glossiness
and transparency from its image. We have proposed to
use a set of relative information to learn a function rep-
resenting the strength of the target attribute based on
learning to rank. The experimental results show that
the proposed method is very promising; it can recog-
nize glossiness, transparency, smoothness, and coldness
with high accuracy, despite the fact that the size of train-

ing data is small and only simple features are used for
the task. Future work includes making it possible to
recognize other attributes and developing more effec-
tive image features.
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