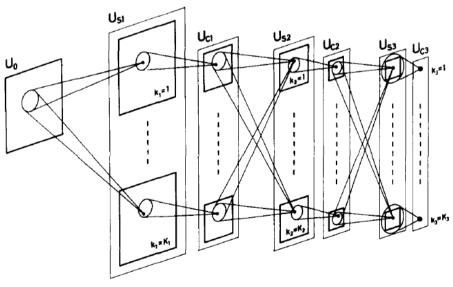
Convolutional neural networks

- History and background
 - Simple cells and complex cells
- Basic structures of CNNs
 - Convolution and pooling
- Training CNNs
- Recent designs of CNNs

CNN : Convolutional Neural Networks

- Neocognitron [Fukushima80]
- LeNet [LeCun+89]
 - Backpropagation Applied to Handwritten Zip Code Recognition, 1989
- Based on findings in neuroscience
 - Simple cell/complex cell [Hubel-Wiesel]
 - Local receptive field)



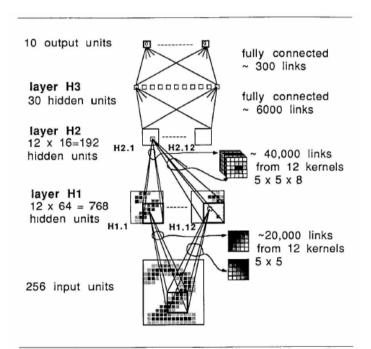


Fig 4 Schematic diagram illustrating the interconnections between layers in the neocognitron

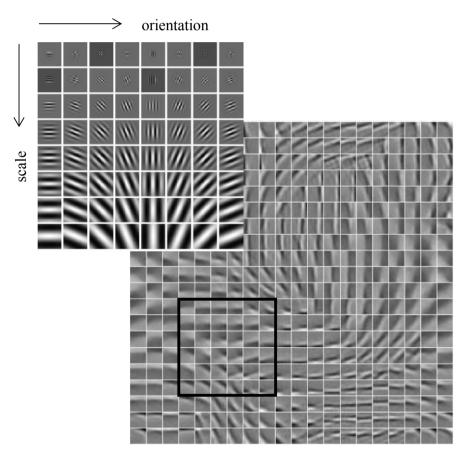
[Fukushima+83]

Figure 3 $\,$ Log mean squared error (MSE) (top) and raw error rate (bottom) versus number of training passes

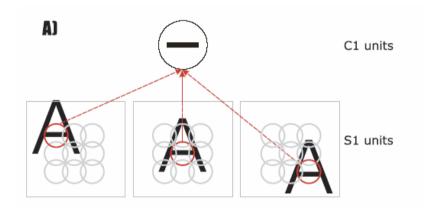
[LeCun+89]

V1 area of visual cortex and simple cells/complex cells

- Gabor wavelets
 - Tuned to position/orientation/scale
 - Topographic map



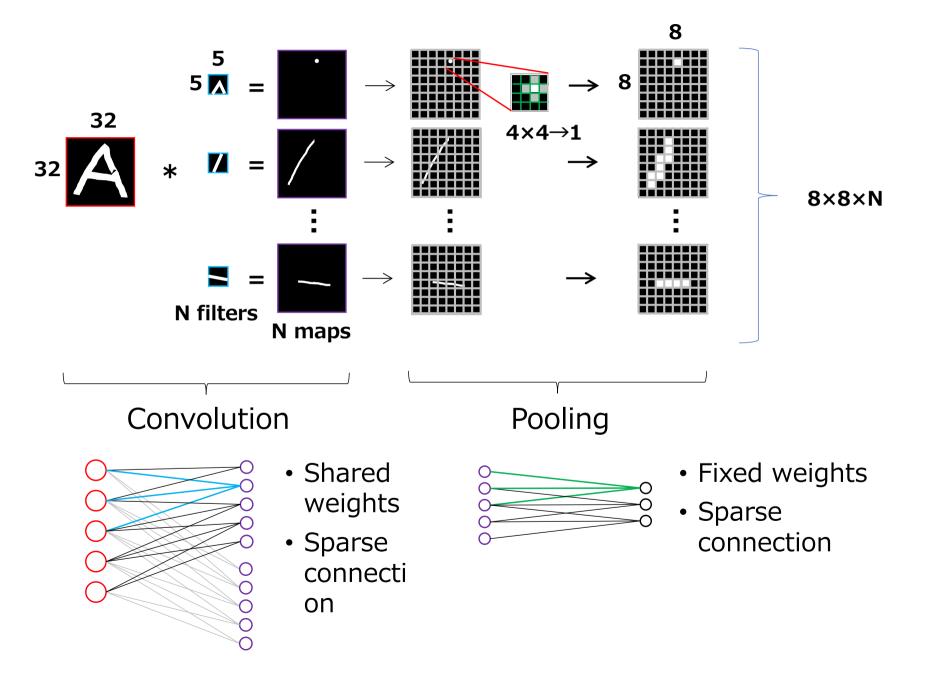
Kavukcuoglu, Ranzato, Fergus, LeCun, Learning Invariant Features through Topographic Filter Maps, CVPR09 • Simple cells/complex cells [Huber-Wiesel59]



Serre et al, Object Recognition with Features Inspired by Visual Cortex, CVPR05

- Slow feature analysis [Berkes-Wiskott05]
- Gabor quadrature pair [Jones -Palmer87]

Two operations: convolution & pooling



Convolution

$$u_{ij} = \sum_{p=0}^{H-1} \sum_{q=0}^{H-1} x_{i+p,j+q} h_{pq}$$

Input

Output (map)

77	80	82	78	70	82	82	140
83	78	80	83	82	77	94	151
87	82	81	80	74	75	112	152
87	87	85	77	66	99	151	167
84	79	77	78	76	107	162	160
86	72	70	72	81	151	166	151
78	72	73	73	107	166	170	148
76	76	77	84	147	180	168	142

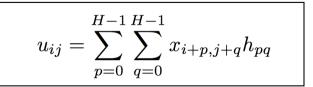
79	80	81	79	79	98
82	81	79	75	81	114
85	83	77	72	99	144
79	77	77	79	112	155
73	71	73	89	142	162
73	73	77	110	160	166

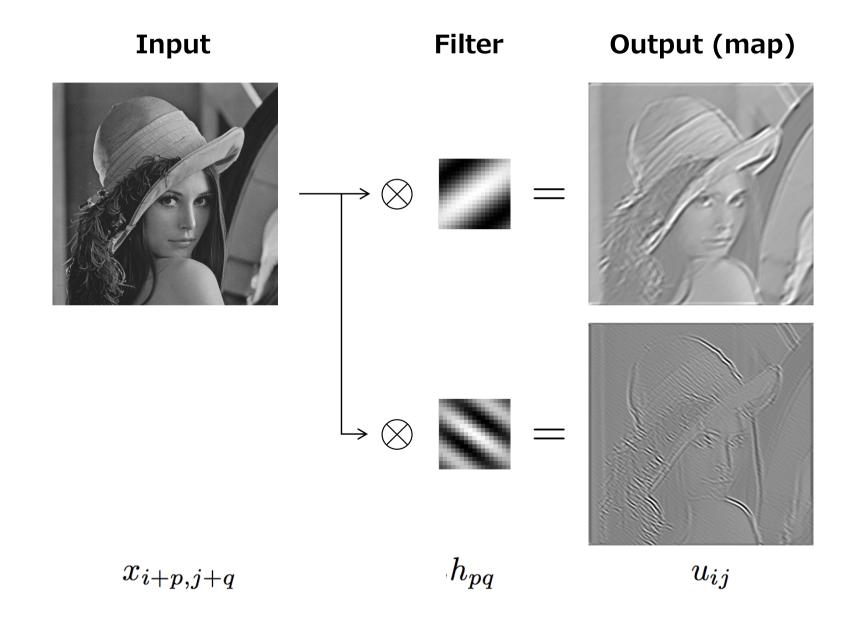
 $x_{i+p,j+q}$

 h_{pq}

 u_{ij}

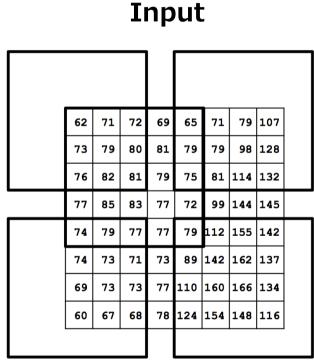
Convlution





Pooling

- Choose and transmit a single value from a small region in input
 - The small regions are sampled with margins, resulting in smaller resolution (or size) of the output



Output

82	82	114	132
85	85	155	155
85	110	166	166
79	124	166	166

 \rightarrow

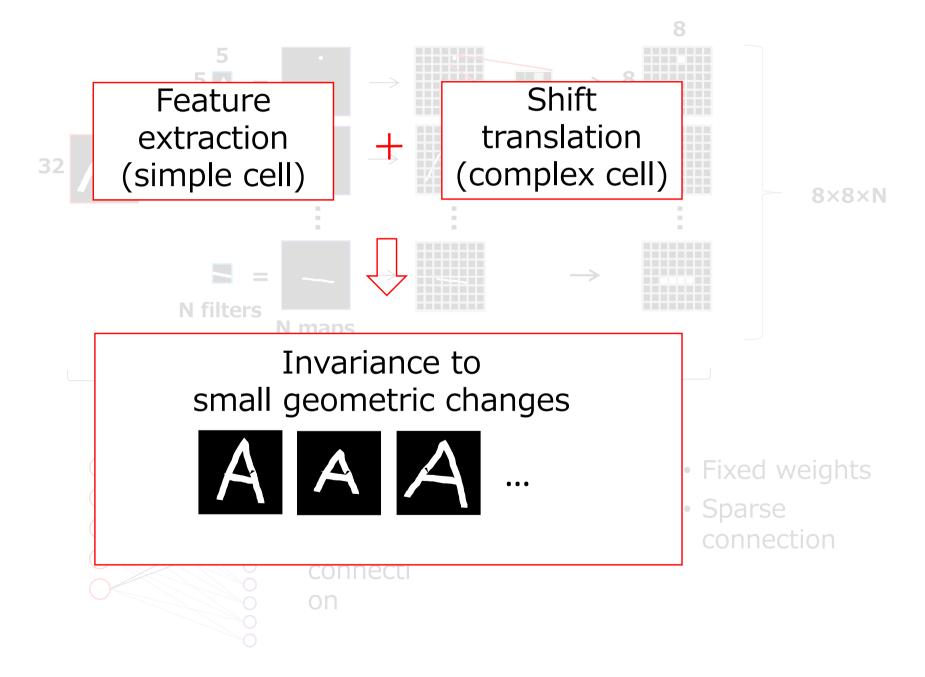
Max pooling

$$u_{ijk} = \max_{(p,q)\in P_{ij}} z_{pqk}$$

Average pooling

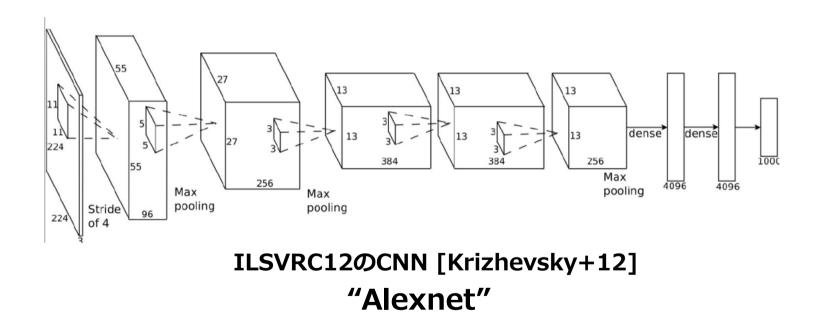
$$u_{ijk} = \frac{1}{H^2} \sum_{(p,q) \in P_{ij}} z_{pqk}$$

Two operations: convolution & pooling

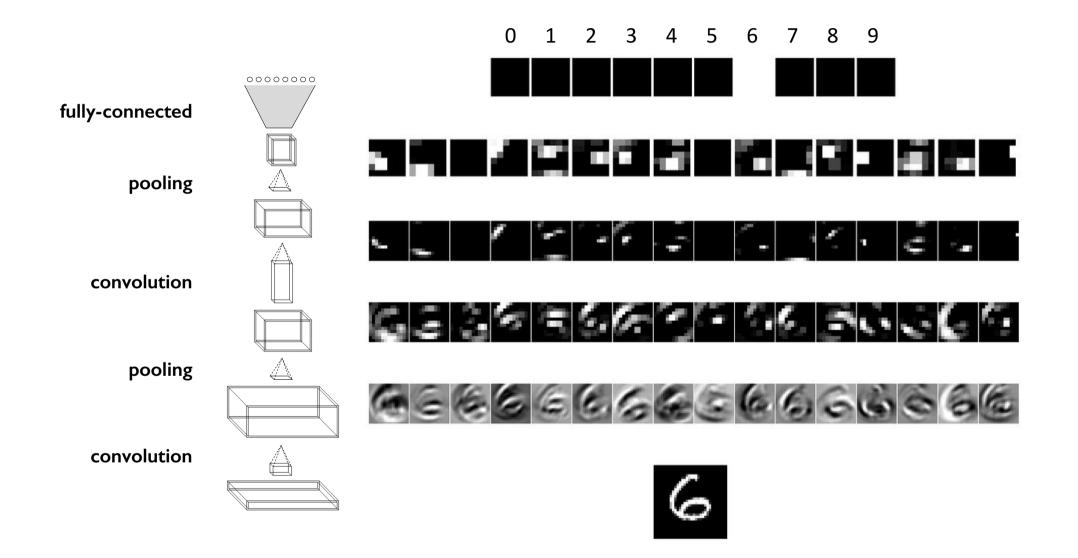


Deep CNNs

 Feed-forward nets with alternated repetition of conv. layer(s) and a pooling layer followed by fully-connected layer(s)

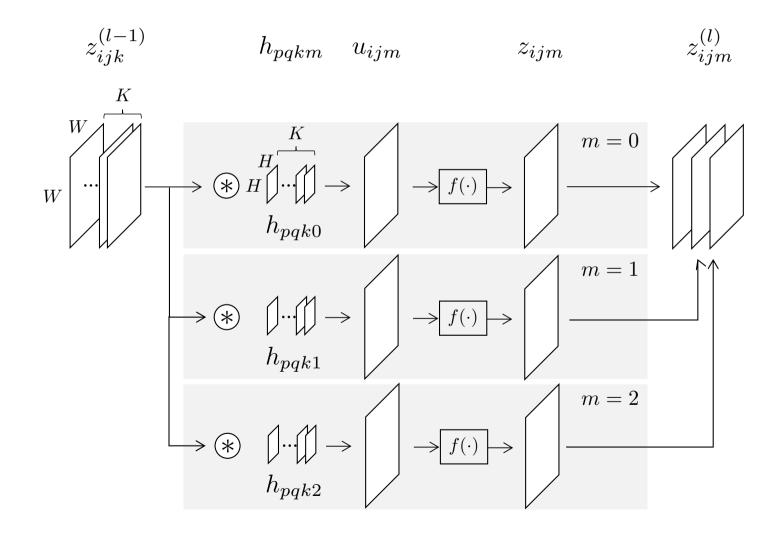


Example: CNN behaviors



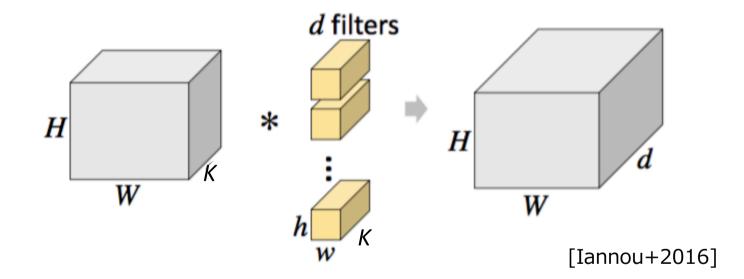
Details of convolution layers

• Multi-channel inputs and outputs



Details of convolution layers

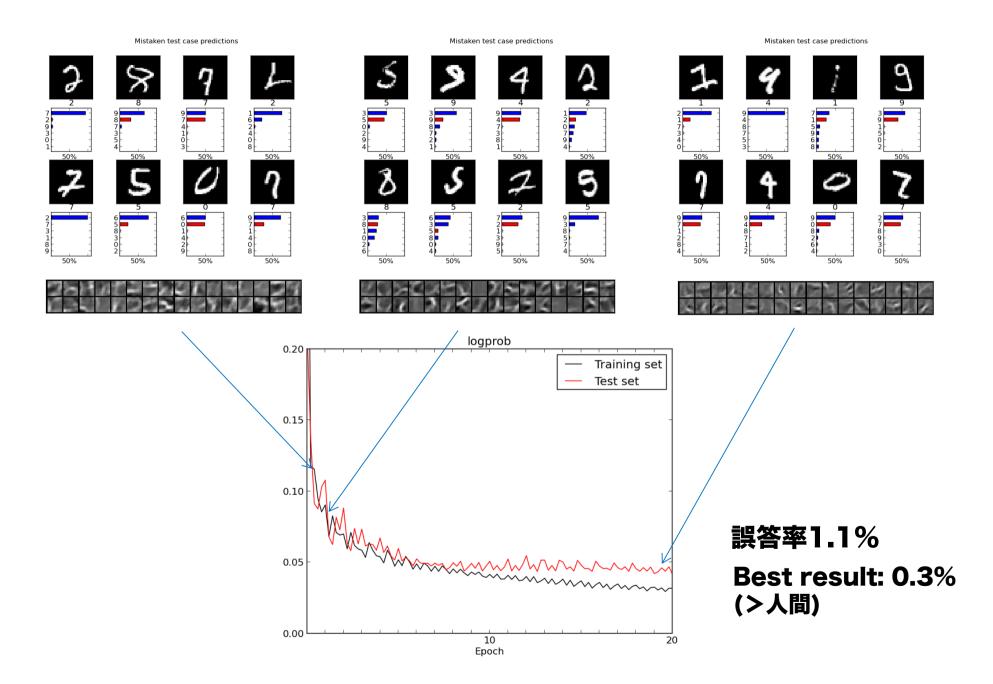
 Computation of sum & product between 3rd order tensors



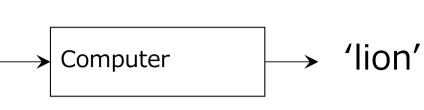
Training CNNs

- The same as ordinary FF nets
 - SGD with computation of gradients by backprop
- Backprop of deltas in pooling layers
 - Max pooling: the selected input pixel (unit) in the forward process is memorized; a propagated delta is simply transmitted to that pixel (equivalently, a unit weights connection to it)

Example: training of hand-written digits



Object category recognition



 \Rightarrow 'lion'

⇒ 'acoustic guitar'

guitar'

 \Rightarrow 'electric



 \Rightarrow 'table lamp'

⇒ 'Japanese spaniel'

 \Rightarrow 'crane'

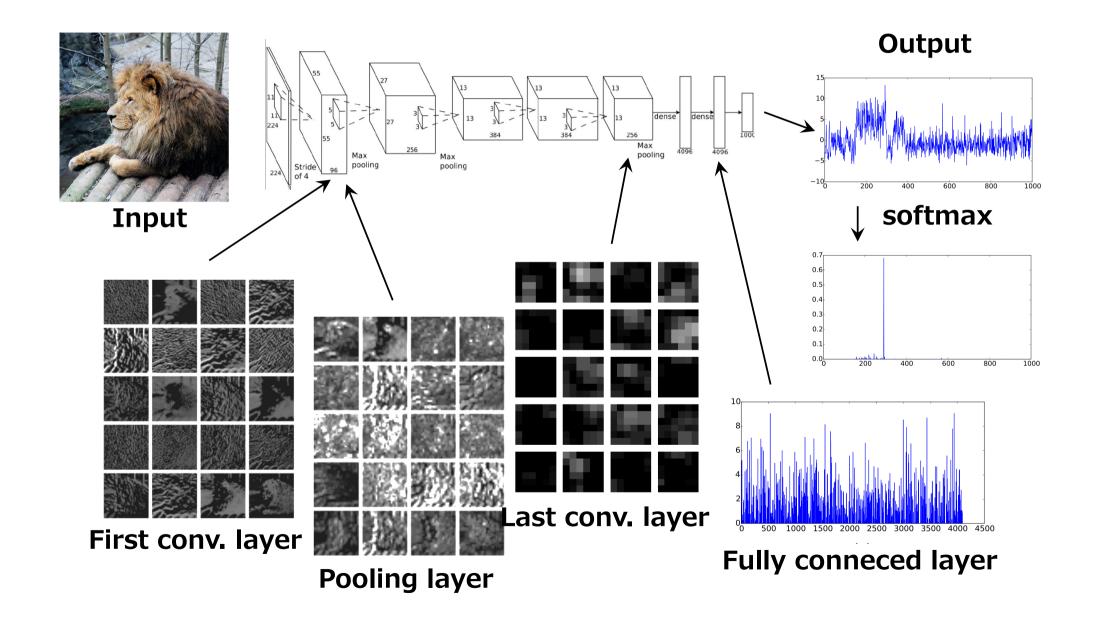
Example: training of 1000 object categories

- More than one million training
 - Moer than 1000 images per category
- Training takes days to weeks even using the latest GPUs
- CNNs now surpass human vision in terms of accuracy

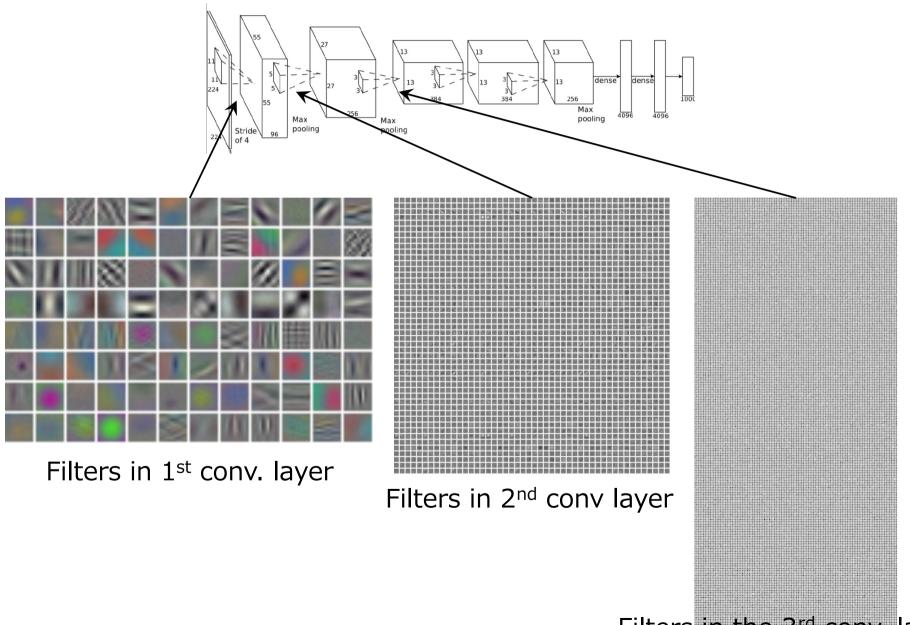
IM GENET Home Explore About Download 8 Car, auto, automobile, machine, motorcar 92.48% 📒 1307 A motor vehicle with four wheels; usually propelled by an internal combustion engine; "he needs a car to get to Cross-entropy loss Numbers in brackets: (the number of synsets in the subtree). Treemap Visualization Images of the Synset + ImageNet 2011 Fall Release (32326) plant flora plant life (4486) geological formation, formation (natural object (1112) sport, athletics (176) artifact, artefact (10504 instrumentality, instru device (2760) implement (726) container (744) wheeled vehicle (229) baby buggy, baby carr bicycle, bike, wheel, cy boneshaker (0) car, railcar, railway ca handcart, pushcart, ca horse-drawn vehicle (2 motor scooter, scoot rolling stock (0) scooter (0) self-propelled vehicle ($\frac{1}{2}$ - personnel carrier (100000 200000 300000 400000 reconnaissance veh weapons carrier (0) # mini-batches armored vehicle, an carrier (0) forklift (0) locomotive, engine, motor vehicle, auto - amphibian, amp hloodmobile (0)

(He+, Delving deep into rectifier, 2015)

How a trained CNN processes an input

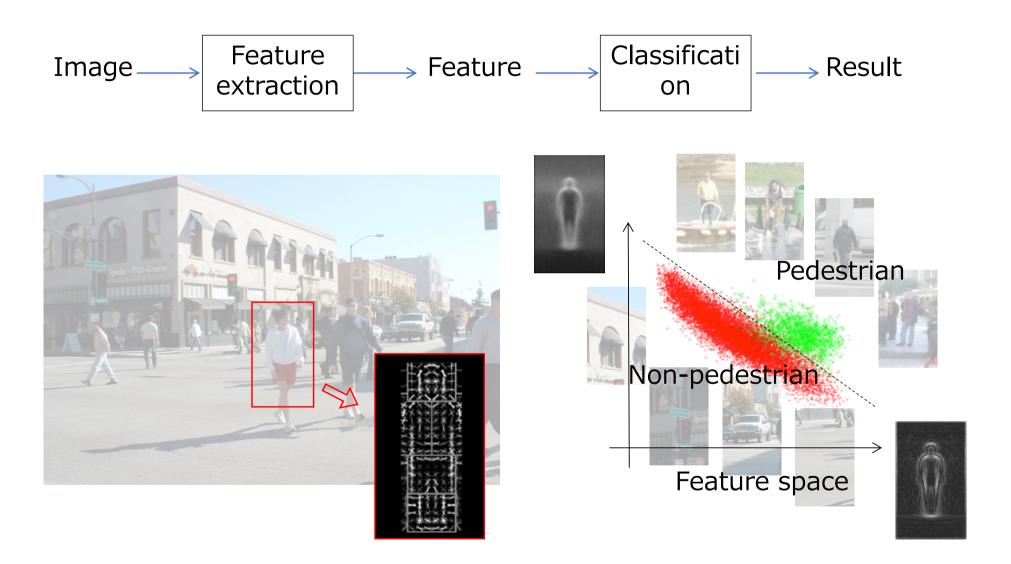


Trained features

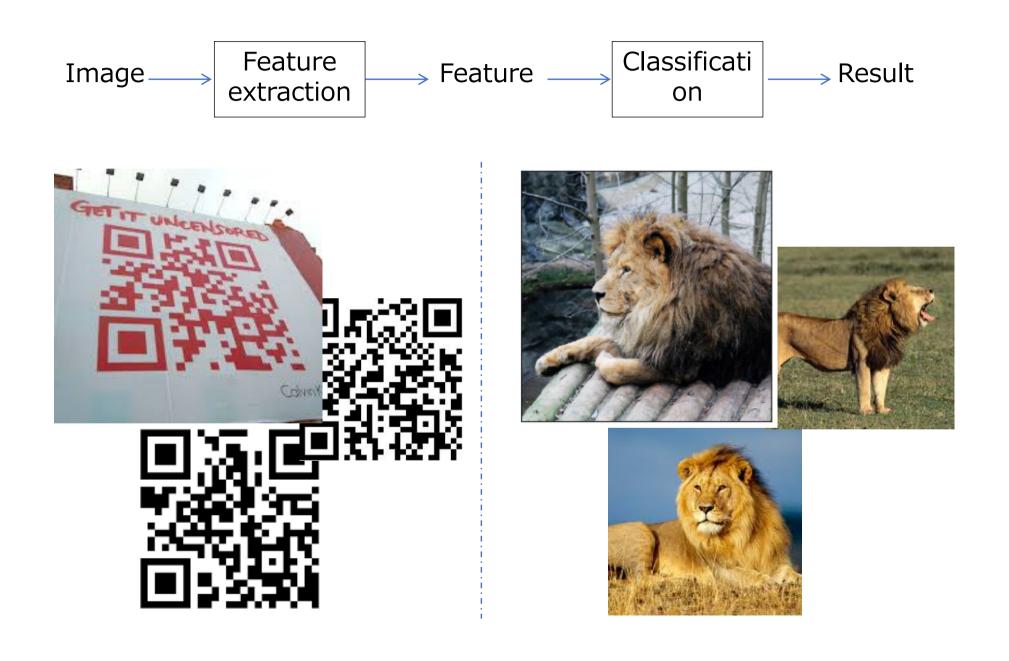


Filters in the 3rd conv. layer

Standard pipeline of visual recognition

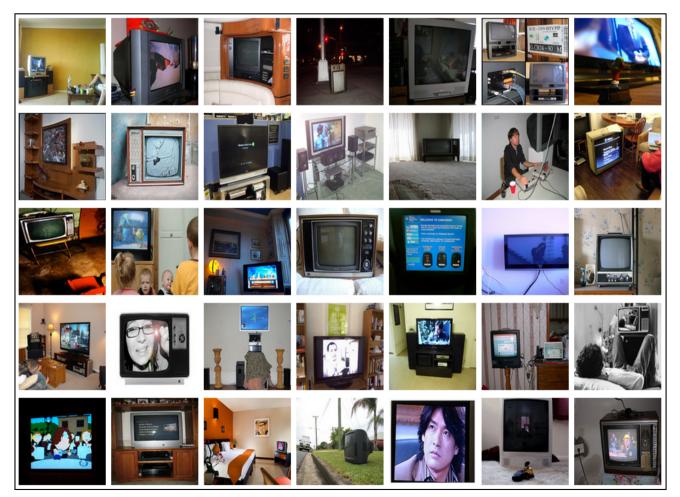


Difficulties with the task



Difficulties with the task

• Invariance: Extracted features need to be tolerant to all sorts of variation in the same category



"Television set"

Difficulties with the task

• Discriminability: Extracted features need to be sensitive to small differences between categories

'Blenheim spaniel'

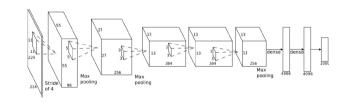
'Japanese spaniel'

Recent design of CNNs

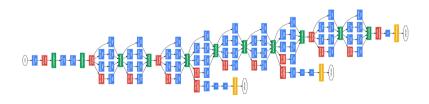
表1 代表的なモデルのパラメータ数および演算回数. 畳込み層お よび全結合層での合計と総計.

モデル		Alexnet	VGGNet	GoogLeNet	ResNet		
_		層	5	13	21	151	Layers
Co	nv.	重み	380 万	0.15 億	580 万	-	Weights
		演算	10.8 億	153 億	15 億	113 億	Operations
		層	3	3	1	1	Layers
	FC	重み	0.59 億	1.24 億	100 万	200 万	Weights
		演算	0.59 億	1.24 億	100 万	200 万	Operations
Т	otal	重み	0.62 億	1.38 億	680 万	-	Weights
	Juli	演算	11.4 億	155 億	15 億	113 億	Operations

AlexNet [Krizhevsky+12]



GoogLeNet [Szegedy+14]



VGGNet [Simonyan+14]

fc8

fc7

fc6

pool5

conv5-3

conv5-2

conv5-1 pool4

conv4-3

conv4-1 pool3 conv3-3

conv3-1

pool2 conv2-2 conv2-1

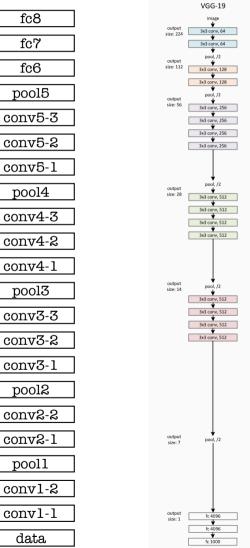
pooll

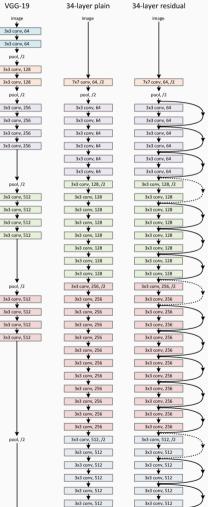
convl-2

convl-l

data

ResNet [He+15]





fc 1000

5th (and final) assignments

- 1. Briefly explain your research for your thesis (MSc/PhD), i.e., what you (or your lab) are studying now.
- 2. Explain how you think machine learning(ML) including deep learning can be used to solve some of the problems you (or your lab) are tackling now.
 - If ML or DL has already been used, explain how it can be better used for the problem.
- 3. If you think the use of ML is irrelevant for your research, find a problem to which ML has not yet been applied and explain how ML can be used for it.