
Feedforward neural networks
• Units and activation functions
• Multi-layer feedforward networks
• Design of output layers
• Loss functions
• The backpropagation algorithm
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Units (neurons)
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Activation functions

• f is called an activation function

z =
1

1 + e�u

z = max(u, 0)

z = tanh(u)

ReLU: Rectified Linear Unit

hyperbolic tangent

logistic function
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Activation functions
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Single-layer networks
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Multi-layer networks
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Training a feedforward net
• A network represents a function

• We use a set of pairs of an input x and an associated output d

• We wish to determine parameters ｗ ＝(W, b) so that the 
function reproduces the data as accurately as possible



Designing the output layer and loss function for regression

• Place the same number of units as the target variable at the 
output layer 

• Choose tanh or identity func. for the activation function of the 
output layer

• Choose the sum of squared difference for the loss function
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Designing the output layer and loss function for classification
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• Place the same number of units as the number of classes at the output 
layer 

• Choose softmax function for the activation function of the output layer
• We regard the output of the kth unit as the likelihood of class k

• Choose the cross entropy loss for the loss function



Softmax and cross-entropy

KX

k=1

yk = 1

d = [d1, d2, . . . , dK ]

• We employ 1-of-k coding (one-hot vector) for representing each 
class

• Softmax function:

• We can interpret the output of each unit as a posterior 
probability of the corresponding class

• Difference between the output of the net and the target value

cross-entropy



Computation of gradients wrt. weights
• Theoretically possible by applying the chain rule, but in 

practice almost intractable for nets with many layers
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The backpropagation algorithm
• Gradient at a weight at a a layer can be calculated as:
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Define delta: ⇒ Gradient:

Deltaʼs at each layer
can be back-propagated:



Deltas at output layers
• Regression: identity activation func. & squared loss

• Classification: softmax activation func & cross-entropy loss
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Derivatives of activation functions

Table

Activation func.
Logistic

Hyperbolic tan

ReLU


