
Feedforward neural networks
• Units and activation functions
• Multi-layer feedforward networks
• Design of output layers
• Loss functions
• The backpropagation algorithm

48



Units (neurons)

x1

x2

x3

x4

zu z

w1

現在この
イメージ

w3

w4



Activation functions

• f is called an activation function

z =
1

1 + e�u

z = max(u, 0)

z = tanh(u)

ReLU: Rectified Linear Unit

hyperbolic tangent

logistic function
Classical

Now the 
most 
popular



Activation functions

−5 0 5
−1

−0.5

0

0.5

1
z =

1

1 + e�u

z = max(u, 0)

z = tanh(u)

• f is called an activation function



Single-layer networks

x1

x2

x3

x4

u1

u2

u3 z3

z2

z1

z3

z2

z1



Multi-layer networks

x1

x2

x3

x4

y1

y2

W(2)

W(3)

l = 1 2 3

x

z(1) z(2) y = z(3)z(3)

l = 1 2 3

Propagation from 
lth to (l+1)th layer

Lth (output) layer

1st (input) layer
x ⌘ z

(1)



Training a feedforward net
• A network represents a function

• We use a set of pairs of an input x and an associated output d

• We wish to determine parameters ｗ ＝(W, b) so that the 
function reproduces the data as accurately as possible



Designing the output layer and loss function for regression

• Place the same number of units as the target variable at the 
output layer 

• Choose tanh or identity func. for the activation function of the 
output layer

• Choose the sum of squared difference for the loss function

x

...
z(1) z(2) z(3)

y1
y2
y3
y4
...

y10



Designing the output layer and loss function for classification

x

...
z(1) z(2) z(3)

y1
y2
y3
y4
...

y10

• Place the same number of units as the number of classes at the output 
layer 

• Choose softmax function for the activation function of the output layer
• We regard the output of the kth unit as the likelihood of class k

• Choose the cross entropy loss for the loss function



Softmax and cross-entropy

KX

k=1

yk = 1

d = [d1, d2, . . . , dK ]

• We employ 1-of-k coding (one-hot vector) for representing each 
class

• Softmax function:

• We can interpret the output of each unit as a posterior 
probability of the corresponding class

• Difference between the output of the net and the target value

cross-entropy



Computation of gradients wrt. weights
• Theoretically possible by applying the chain rule, but in 

practice almost intractable for nets with many layers

x1

x2

x3

x4

y1

y2

W(2)

W(3)

l = 1 2 3

E(w) =
NX

n=1

En(w)



The backpropagation algorithm
• Gradient at a weight at a a layer can be calculated as:

j

k

ll � 1 l + 1

...

z(l)j

z(l)j

u(l)
j

u(l+1)
k

i
j

k

�(l+1)
1

�(l+1)
k

...

�(l+1)
k+1

w(l+1)
kj

w(l)
ji

�(l)j

ll � 1 l + 1

x1

x2

x3

x4
= x

+1
+1

z(1) z(2) z(3)

y= z(3)

Define delta: ⇒ Gradient:

Deltaʼs at each layer
can be back-propagated:



Deltas at output layers
• Regression: identity activation func. & squared loss

• Classification: softmax activation func & cross-entropy loss

En =
1

2
ky � dk2 =

1

2

X

j

(yj � dj)
2

dkdj = 0 (k 6= j)d2k = dk
X

k

dk = 1

(f/g)0 = (f 0g � fg0)/g2



Derivatives of activation functions

Table

Activation func.
Logistic

Hyperbolic tan

ReLU


