
Numerical computation II
• Reprojection error
• Bundle adjustment
• Family of Newtonʼs methods
• Statistical background
• Maximum likelihood estimation



Reprojection error
• Reprojection error = Distance between the observation and its 

estimation (reproduction) measured on the image

• We search for x that minimizes E(x); Called bundle adjustment
• Minimization is performed by Newtonʼs method etc.

• Good initial values necessary



Bundle adjustment
• Minimizing the sum of reprojection errors with all the unknown 

parameters, i.e., camera parameters and point coordinates
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Example: Calibration of multiple surveillance cameras
• Observation: point correspondences among multi-view images 
• Parameters to estimate: Poses and focal lengths of the cameras 

plus the 3D coordinates of scene points



Example: Fitting an ellipse to a set of points

• Observation: points
• To estimate: the shape of ellipse and the true positions of the 

points



Minimization of  
• Any numerical method for minimization can generally be used

• Family of Newtonʼs method
• Other approaches

• Reprojection error has the form of a sum of squares; nonlinear 
least squares methods are a natural choice

• Standard methods:
• Gauss-Newton method
• Levenberg-Marquardt method



Using Newtonʼs method for minimization
• We approximate the local shape of E(x) by a quadratic function; 

then we find the minimum of the quadratic function
• Starting an initial value, we repeat this procedure until 

convergence



Using Newtonʼs method for minimization
• We approximate the local shape of E(x) by a quadratic function; 

then we find the minimum of the quadratic function
• Starting an initial value, we repeat this procedure until 

convergence

Gradient: Hessian:

Compute the gradient and Hessian

Update solution



Gauss-Newton method
• Approximates the Hessian utilizing E being a sum of squares 

• Or equivalently

where

Parameter update:



Levenberg-Marquardt method
• Update the parameter with

• is called the damping factor
• à coincides with the Gauss-Newton update
• à coincides with the steepest descent method

• is adaptively chosen depending on if E(x) decreases
• Increase     when 
• Decrease     when 

[Levenberg1944, Marquardt1963]
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Updating parameters
• Parameter update à Solve a linear equation
• Matrix inverse should not be used; inefficient, inaccurate

• A standard approach = Cholesky decomposition + 
forward/backward substitution

• Remark: Preconditioned Conjugate Gradient (PCG) method is 
preferred when A is very large
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Statistical explanation of bundle adjustment
• Observation inevitably has errors

• Statistical model of the errors
• They are random variables following a Gaussian distribution

observation true val. error



What is good estimation?
• There are an infinite number of estimating methods

• A shared view of “Whatʼs good estimate?”
• Mean of the estimates coincides with the true value
• Variance of the estimates is as small as possible

• There indeed exists a theoretical lower bound for the variance, named 
the Cramer-Rao lower bound
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Maximum likelihood estimation
• Maximum likelihood = Selects the parameter value that 

maximizes the likelihood as an estimate:

• The likelihood is defined as

• The estimate is called the maximum likelihood estimate
• It can be shown that it attains the Cramer-Rao bound 

asymptotically as the number of observations goes to infinity

all	observationsparameter



Bundle adjustment as maximum likelihood

Model of an observation:
where	the	error	

Then, the PDF of an observation is given by

The PDF of all observations z1, . . . , zN
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Maximize the likelihood

is equivalent to minimizing negative log-likelihood: 
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