Numerical computation II

- Reprojection error
- Bundle adjustment
- Family of Newton's methods
- Statistical background
- Maximum likelihood estimation

Reprojection error

- Reprojection error = Distance between the observation and its estimation (reproduction) measured on the image

$$
E(\mathrm{x})=\sum_{i=1}^{m} \sum_{j=1}^{n}\left(u_{i j}-\widehat{u}_{i j}\right)^{2}+\left(v_{i j}-\widehat{v}_{i j}\right)^{2}
$$

$$
\mathrm{x} \leftarrow\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{m}}, \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}
$$

- We search for x that minimizes $E(x)$; Called bundle adjustment
- Minimization is performed by Newton's method etc.
- Good initial values necessary

Bundle adjustment

- Minimizing the sum of reprojection errors with all the unknown parameters, i.e., camera parameters and point coordinates

Geometric model

Input

$$
\mathbf{x}_{j}^{(i)} \propto \mathrm{P}_{i} \mathbf{X}_{j}
$$

Output

$$
\mathbf{x}_{j}=\left[\begin{array}{llll}
X_{j} & Y_{j} & Z_{j} & 1
\end{array}\right]^{\top}
$$

$3 n$

$$
\mathrm{P}_{i}=\mathrm{K}_{i}\left[\begin{array}{ll}
\mathrm{R}_{i} & \mathbf{t}_{i}
\end{array}\right]
$$

$11 m$

Example: Calibration of multiple surveillance cameras

- Observation: point correspondences among multi-view images
- Parameters to estimate: Poses and focal lengths of the cameras plus the 3D coordinates of scene points

$$
E(\mathrm{x})=\sum_{i=1}^{m} \sum_{j=1}^{n}\left(u_{i j}-\widehat{u}_{i j}\right)^{2}+\left(v_{i j}-\widehat{v}_{i j}\right)^{2}
$$

Example: Fitting an ellipse to a set of points

- Observation: points
- To estimate: the shape of ellipse and the true positions of the points

$$
E(\mathrm{x})=\sum_{i=1}^{m} \sum_{j=1}^{n}\left(u_{i j}-\widehat{u}_{i j}\right)^{2}+\left(v_{i j}-\widehat{v}_{i j}\right)^{2}
$$

Minimization of $E(\mathrm{x})$

- Any numerical method for minimization can generally be used
- Family of Newton's method
- Other approaches
- Reprojection error has the form of a sum of squares; nonlinear least squares methods are a natural choice

$$
E(\mathrm{x})=\frac{1}{2}\|\mathbf{e}(\mathrm{x})\|^{2}=\frac{1}{2} \sum_{k} e_{k}^{2}
$$

- Standard methods:
- Gauss-Newton method
- Levenberg-Marquardt method

Using Newton's method for minimization

- We approximate the local shape of $E(x)$ by a quadratic function; then we find the minimum of the quadratic function
- Starting an initial value, we repeat this procedure until convergence

Using Newton's method for minimization

- We approximate the local shape of $\mathrm{E}(\mathrm{x})$ by a quadratic function; then we find the minimum of the quadratic function
- Starting an initial value, we repeat this procedure until convergence

$$
\begin{aligned}
& E(\mathbf{x}+\delta \mathbf{x}) \approx E(\mathbf{x})+\mathbf{g}^{\top} \delta \mathbf{x}+\frac{1}{2} \delta \mathbf{x}^{\top} \mathrm{H} \delta \mathbf{x} \\
& \quad \text { Gradient: } \mathbf{g}=\left.\frac{d E}{d \mathbf{x}}\right|_{\mathbf{x}} \quad \text { Hessian: } \mathrm{H}=\left.\frac{d^{2} E}{d \mathbf{x}^{2}}\right|_{\mathbf{x}}
\end{aligned}
$$

Compute the gradient and Hessian

Update solution $\mathbf{x}+\delta \mathbf{x} \rightarrow \mathbf{x}$

$$
\delta \mathrm{x}=-\mathrm{H}^{-1} \mathrm{~g}
$$

Gauss-Newton method

$$
E(\mathrm{x})=\frac{1}{2}\|\mathrm{e}(\mathrm{x})\|^{2}
$$

- Approximates the Hessian utilizing E being a sum of squares

$$
\begin{gathered}
\mathrm{H}=\left.\frac{d^{2} E}{d \mathbf{x}^{2}}\right|_{\mathbf{x}}=\left(\frac{d \mathbf{e}}{d \mathbf{x}}\right)^{\top}\left(\frac{d \mathbf{e}}{d \mathbf{x}}\right)+\left(\frac{d}{d \mathbf{x}}\left(\frac{d \mathbf{e}}{d \mathbf{x}}\right)^{\top}\right) \mathbf{e} \approx\left(\frac{d \mathbf{e}}{d \mathbf{x}}\right)^{\top}\left(\frac{d \mathbf{e}}{d \mathbf{x}}\right) \\
\left(\mathrm{g}=\frac{d E}{d \mathbf{x}}=\left(\frac{d \mathbf{e}}{d \mathbf{x}}\right)^{\top} \mathbf{e}\right)
\end{gathered}
$$

- Or equivalently

$$
\mathrm{H} \approx \mathrm{~A} \equiv \mathrm{~J}^{\top} \mathrm{J} \quad \text { where } \quad \mathrm{J}=\left.\frac{\mathrm{de}}{\mathrm{dx}}\right|_{\mathrm{x}}
$$

Parameter update: $\mathrm{A} \delta \mathbf{x}=-\mathbf{g}$

Levenberg-Marquardt method

- Update the parameter with

$$
(\mathrm{A}+\lambda \mathrm{I}) \delta \mathrm{x}=-\mathrm{g}
$$

- λ is called the damping factor
- $\lambda=0 \rightarrow$ coincides with the Gauss-Newton update
- $\lambda=\infty \rightarrow$ coincides with the steepest descent method
- λ is adaptively chosen depending on if $\mathrm{E}(\mathrm{x})$ decreases
- Increase λ when $E(\mathbf{x}+\delta \mathbf{x})>E(\mathbf{x})$
- Decrease λ when $E(\mathbf{x}+\delta \mathbf{x})<E(\mathbf{x})$

Updating parameters

- Parameter update \rightarrow Solve a linear equation $A \delta \mathbf{x}=\mathbf{a}$
- Matrix inverse should not be used; inefficient, inaccurate

$$
\begin{equation*}
\mathrm{A} \delta \mathbf{x}=\mathbf{a} \Rightarrow \delta \mathbf{x}=\mathrm{A}^{-1} \mathbf{a} \tag{NG!}
\end{equation*}
$$

- A standard approach = Cholesky decomposition + forward/backward substitution

- Remark: Preconditioned Conjugate Gradient (PCG) method is preferred when A is very large

Statistical explanation of bundle adjustment

- Observation inevitably has errors

- Statistical model of the errors
- They are random variables following a Gaussian distribution

$$
\varepsilon_{i}, \varepsilon_{i}^{\prime} \sim N\left(0, \sigma^{2}\right)
$$

What is good estimation?

- There are an infinite number of estimating methods

- A shared view of "What's good estimate?"
- Mean of the estimates coincides with the true value
- Variance of the estimates is as small as possible
- There indeed exists a theoretical lower bound for the variance, named the Cramer-Rao lower bound

Distribution of estimates

True value

Maximum likelihood estimation

- Maximum likelihood = Selects the parameter value that maximizes the likelihood as an estimate:

$$
\widehat{\mathbf{x}}=\underset{\mathbf{x}}{\operatorname{argmax}} L(\mathbf{x} ; \mathbf{Z})
$$

- The likelihood is defined as

$$
L(\mathbf{x} ; \mathbf{Z}) \equiv p(\mathbf{Z} ; \mathbf{x})
$$

parameter all observations

- The estimate is called the maximum likelihood estimate
- It can be shown that it attains the Cramer-Rao bound asymptotically as the number of observations goes to infinity

Bundle adjustment as maximum likelihood

Model of an observation:

$$
\mathbf{z}_{i}=\overline{\mathbf{z}}_{i}+\varepsilon_{i} \text { where the error } \varepsilon_{i} \sim N\left(0, \sigma^{2} \mathrm{I}\right)
$$

Then, the PDF of an observation is given by

$$
p\left(\mathbf{z}_{i}\right)=C \exp \left\{-\frac{\left(\mathbf{z}_{i}-\overline{\mathbf{z}}_{i}\right)^{2}}{2 \sigma^{2}}\right\} \quad C=\frac{1}{(2 \pi)^{d / 2} \sigma^{d}}
$$

The PDF of all observations $\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}$

$$
p\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right)=\prod_{i=1}^{N} C \exp \left\{-\frac{\left(\mathbf{z}_{i}-\overline{\mathbf{z}}_{i}\right)^{2}}{2 \sigma^{2}}\right\}
$$

Maximize the likelihood

$$
L\left(\overline{\mathbf{z}}_{1}, \ldots, \overline{\mathbf{z}}_{N} ; \mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right)
$$

is equivalent to minimizing negative log-likelihood: $\sum_{i=1}^{N}\left(\mathbf{z}_{i}-\overline{\mathbf{z}}_{i}\right)^{2}$

