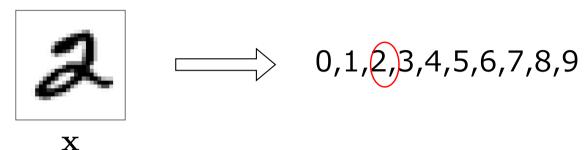
Introduction to machine learning II

- Classification
 - Linear model: logistic regression
 - Fitting of a model
 - Statistical interpretation: maximum likelihood
 - Perceptron
 - Multi-class classification: multi-class logistic regression
- Generalization errors
 - Overfitting
 - Cross-validation
- Support vector machines
 - Extension to multi-class classification
 - Kernel SVMs

Classification

 Is to identify to which of of K known classes the input x belongs



 Suppose we are given N pairs of an observation and its associated true class

$$\{\mathbf{x}_n\}(n=1,\ldots,N)$$
 $\{d_n\}(n=1,\ldots,N)$

Then we want to predict to which class a novel input
 x belongs

Classification

- The simplest case: two-class classification
 - Also called as binary classification
- We encode d by one of the following two methods
 - *d* is either 0 or 1
 - *d* is either -1 or 1
- Example: problem of estimating gender of a person from his/her weight and height

$$\mathbf{x} = [x_1, x_2]^{\top} \qquad \qquad d = 0 \text{ or } 1$$

Perceptron

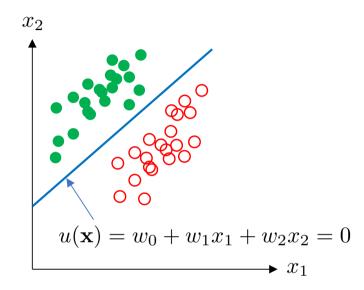
- We choose the coding: *d* is -1 or 1
- We design y(x) that predicts d as follows:

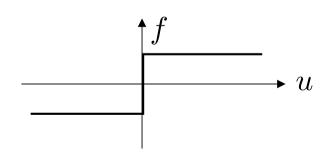
$$y(\mathbf{x}) = \begin{cases} 1 & \text{if } u(\mathbf{x}) > 0 \\ -1 & \text{otherwise} \end{cases}$$

$$u(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + \dots + w_I x_I$$

Or equivalently

$$f(u) = \begin{cases} 1 & \text{if } u > 0 \\ -1 & \text{otherwise} \end{cases}$$
$$y(\mathbf{x}, \mathbf{w}) = f(w_0 + w_1 x_1 + \dots + w_I x_I)$$





Perceptron

We design a function measuring errors of prediction

$$E(\mathbf{w}) = -\sum_{n \in \mathcal{M}} u(\mathbf{x}_n, \mathbf{w}) d_n = -\sum_{n \in \mathcal{M}_{\mathbf{v}}} \mathbf{w}^{\top} \begin{bmatrix} 1 \\ \mathbf{x}_n \end{bmatrix} d_n$$

Update the weight using one sample

Set of misclassified samples

• Iterate this for samples x_1, x_2, \cdots

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \begin{bmatrix} 1 \\ \mathbf{x}_n \end{bmatrix} d_n$$

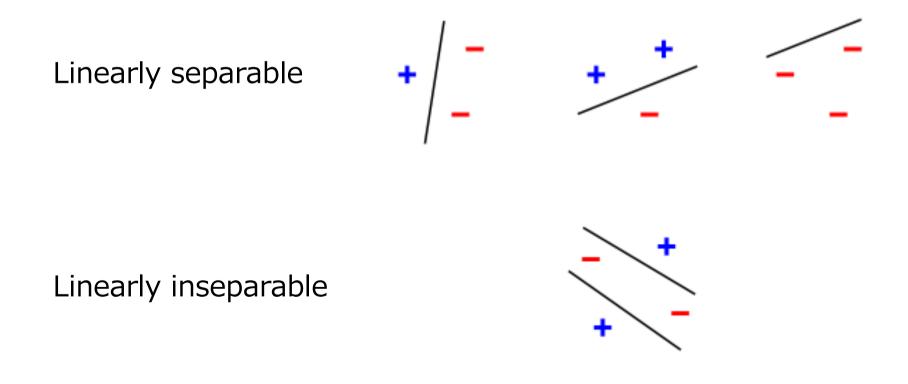
This procedure always decreases error at least for this sample

$$\mathbf{w}^{(t+1)\top} \begin{bmatrix} 1 \\ \mathbf{x}_n \end{bmatrix} d_n = \mathbf{w}^{(t)\top} \begin{bmatrix} 1 \\ \mathbf{x}_n \end{bmatrix} d_n - d_n \begin{bmatrix} 1 & \mathbf{x}_n \end{bmatrix} \begin{bmatrix} 1 \\ \mathbf{x}_n \end{bmatrix} d_n$$

The total sum of errors is not guaranteed to decrease for each update; nevertheless, this iteration will converge for a finite number of iterations in *linearly separable* cases

Linearly separable

• A problem is called linearly separable if all the data points are correctly classified by a single hyperplane



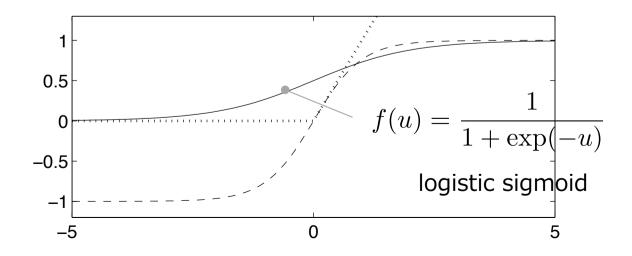
Logistic regression

• The posterior probability of d=1 is modeled by y(x):

$$p(d = 1 \mid \mathbf{x}) \approx y(\mathbf{x})$$
 $\left[p(d = 0 \mid \mathbf{x}) \approx 1 - y(\mathbf{x}) \right]$

 We choose integration of a logistic function with a linear function for y(x)

$$y(\mathbf{x}, \mathbf{w}) = \frac{1}{1 + \exp(-u(\mathbf{x}, \mathbf{w}))} \qquad u(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + \dots + w_I x_I$$



Fitting to data

We are given N pairs of an observation and its true class

$$\{\mathbf{x}_n\}(n=1,\ldots,N)$$
 $\{d_n\}(n=1,\ldots,N)$

- We wish to determine w that agrees well with these samples
- Toward this goal, we employ maximum likelihood estimation
- We choose the value of w that maximize the likelihood

$$l(\mathbf{w}) \equiv p(d_1, \dots, d_N \mid \mathbf{x}_1, \dots, \mathbf{x}_N; \mathbf{w})$$
$$p(d_1, \dots, d_N \mid \mathbf{x}_1, \dots, \mathbf{x}_N) = \prod_{n=1}^{N} p(d_n \mid \mathbf{x}_n)$$

 Or equivalently, we minimize more convenient negative loglikelihood:

$$E(\mathbf{w}) \equiv -\log l(\mathbf{w}) = -\sum_{n=1}^{N} \log p(d_n \mid \mathbf{x}_n)$$

Fitting to data

• We model the posterior probability of d=1 with y(x)

$$p(d=1 \mid \mathbf{x}) \approx y(\mathbf{x})$$

• Using one of standard tricks, we may represent p(d|x) as

$$p(d \mid \mathbf{x}) = \{ p(d = 1 \mid \mathbf{x}) \}^d \{ p(d = 0 \mid \mathbf{x}) \}^{1-d}$$
$$= \{ y(\mathbf{x}, \mathbf{w}) \}^d \{ (1 - y(\mathbf{x}, \mathbf{w})) \}^{1-d}$$

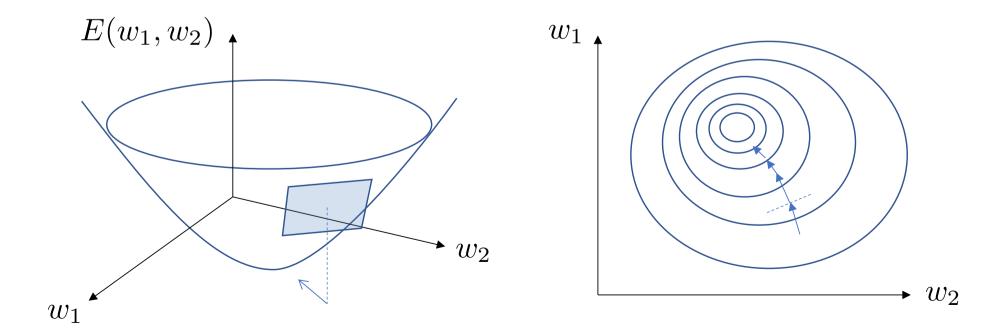
The negative log-likelihood yields "cross-entropy loss function"

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \log p(d_n \mid \mathbf{x}_n)$$

$$= -\sum_{n=1}^{N} \{d_n \log y(\mathbf{x}_n, \mathbf{w}) + (1 - d_n) \log(1 - y(\mathbf{x}_n, \mathbf{w}))\}$$

Computing optimal solutions

- The optimal solution cannot be determined uniquely unlike the case of linear regression
- We then resort to iterative methods such as
 - Gradient descent
 - Newton's methods



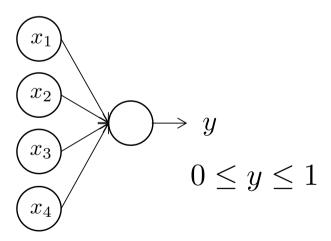
Multi-class classification

- 1-of-K coding is used for multi-class classification
 - E.g., the third class of K=10 classes

$$\mathbf{d} = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]^{\mathsf{T}}$$

Two-class classification

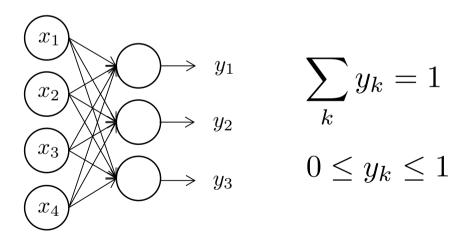
$$d = 0$$
 or 1



Logistic function

Three-class classification

$$\mathbf{d} = [0, 0, 1] \text{ or } [0, 1, 0] \text{ or } [1, 0, 0]$$



Softmax

Multi-class logistic regression

• We model the posterior of $d_k=1$ with $y_k(x)$:

$$p(d_k = 1 \mid \mathbf{x}) \approx y_k(\mathbf{x})$$

• We choose for y(x) linear function + softmax as follows:

$$u_k \equiv u(\mathbf{x}, \mathbf{w}_k) = w_{k0} + w_{k1}x_1 + \dots + w_{kI}x_I$$

Note that the outputs can viewed as probabilities

$$\sum_{k=1}^{K} y_k(\mathbf{x}) = 1 \qquad \Longleftrightarrow \qquad \sum_{k=1}^{K} p(d_k = 1 \mid \mathbf{x}) = 1$$

Loss function of multi-class logistic regression

- How to derive a loss function?
- The joint probability may be written as

$$p(\mathbf{d}|\mathbf{x}) = \prod_{k=1}^{K} p(\mathcal{C}_k|\mathbf{x})^{d_k} = \prod_{k=1}^{K} p(d_k = 1|\mathbf{x})^{d_k}$$

We employ maximum likelihood estimation:

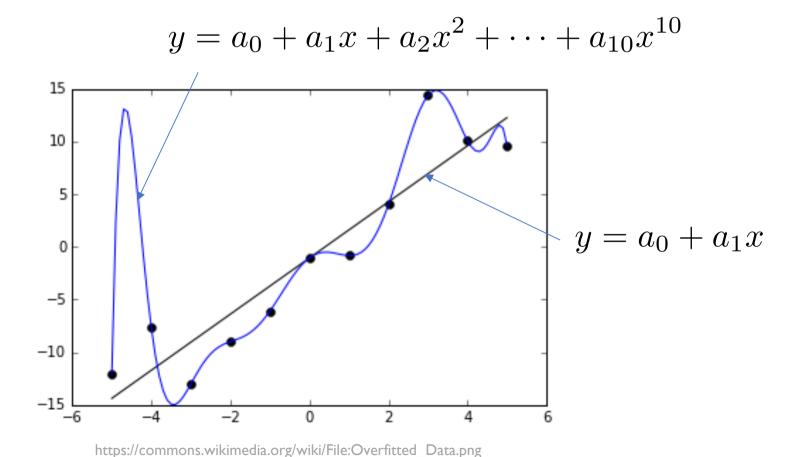
$$L(\mathbf{w}) = \prod_{n=1}^{N} p(\mathbf{d}_n | \mathbf{x}_n; \mathbf{w}) = \prod_{n=1}^{N} \prod_{k=1}^{K} p(\mathcal{C}_k | \mathbf{x}_n)^{d_{nk}} = \prod_{n=1}^{N} \prod_{k=1}^{K} (y_k(\mathbf{x}; \mathbf{w}))^{d_{nk}}$$

What we do is to minimize the following function:

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} d_{nk} \log y_k(\mathbf{x}_n; \mathbf{w})$$

Overfitting

- It is to fit a model to training samples excessively
 - Also called overtraining
- E.g., Suppose fitting a linear func. And 10th-order polynomial func. to the same sample points:



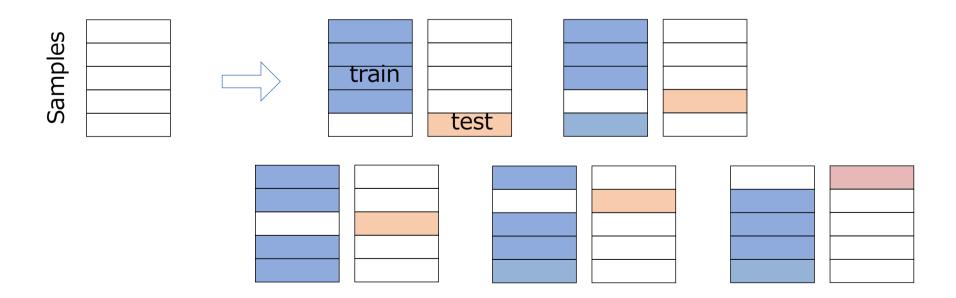
Training error and generalization error

- Training error
 - Sum (or average) of errors (loss values) for training samples
- Generalization error
 - Expected error (loss value) for a novel sample
- Test error (or validation error)
 - Sum (or average) of errors (loss values) for the samples at hand that were not used for training

$$E(\mathbf{w}) = \sum_{n=1}^{N} (d_n - y(\mathbf{x}_n, \mathbf{w}))^2$$

Cross validation

- We usually split the set of samples into two, one for training and the other for test (or validation)
- Accuracy will vary depending on how we split
- Cross validation is a method to evaluate accuracy by calculating the average accuracy for multiple different splits
 - E.g., 5-fold cross validation



Support vector machines (SVMs)

Consider two class classification:

$$d_n = 1 \text{ or } -1$$

• Training samples:

$$(\boldsymbol{x}_1,d_1),(\boldsymbol{x}_2,d_2),\cdots,(\boldsymbol{x}_N,d_N)$$

• Classification:

$$y(\mathbf{x}) = \begin{cases} 1 & \text{if } u(\mathbf{x}) > 0 \\ -1 & \text{otherwise} \end{cases}$$

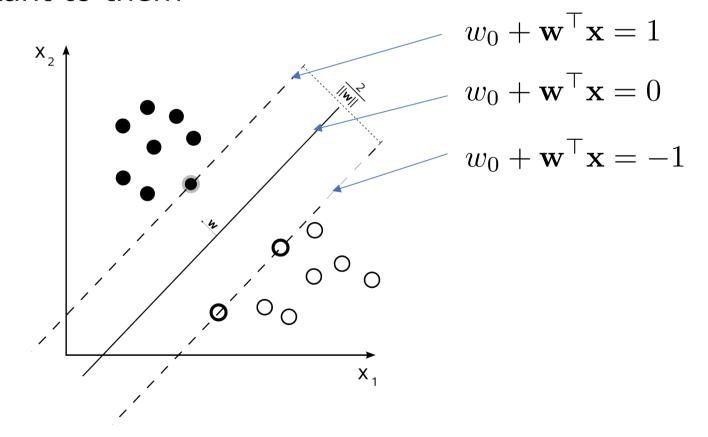
$$u(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + \dots + w_I x_I = w_0 + \mathbf{w}^\top \mathbf{x}$$

Consider minimization of

$$\|\mathbf{w}\|$$
 subject to $d_n(w_0 + \mathbf{w}^{\top}\mathbf{x}) \geq 1$

Support vector machines (SVMs)

- We assume data are linearly separable
- We wish to find the two parallel hyperplanes that have the maximum distance between them and each of which separates the samples
- We then choose the parallel hyperplane that are equally distant to them



Support vector machines (SVMs)

 For linearly non-separable samples, we consider the softmargin

$$E(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{\top}\mathbf{w} + C\sum_{n=1}^{N} \left(\max\left(0, 1 - \mathbf{w}^{\top} \begin{bmatrix} 1 \\ \mathbf{x}_{n} \end{bmatrix} d_{n} \right) \right)^{2}$$

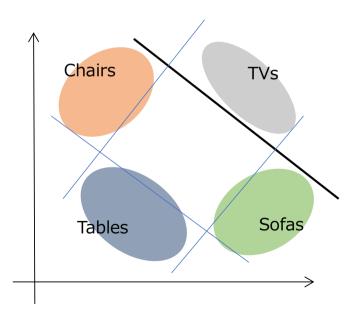
Avoid excessive high evaluation of correctly classified samples

We can always obtain globally optimal solution for the problem

Multi-class classification with two-class classifier

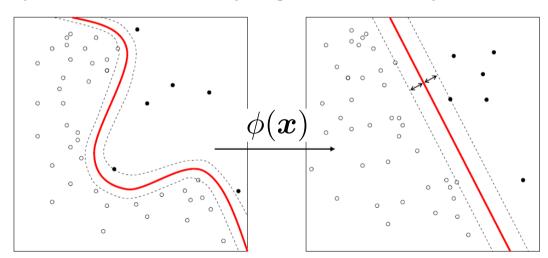
- One-versus-the-rest classifier is the most popular
- 1. Train k two-class classifiers y(x) that separates the class k and all other classes (the rest)
- 2. Regarding the output of the model y(x) as "score" of the class, classify the input into the class with the highest score

$$\operatorname*{argmax}_{k} y_{k}(\mathbf{x})$$



Kernel SVMs (nonlinear SVMs)

- Project the feature space with a nonlinear transformation Φ ; all the samples are projected to the new space
- Train a linear SVM in the new space using the projected samples
- We do not need explicitly specify Φ; instead specify the innerproduct of two projected samples



$$k(\boldsymbol{x}_i, \boldsymbol{x}_j) = \phi(\boldsymbol{x}_i)^T \phi(\boldsymbol{x}_j)$$

- linear: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$.
- polynomial: $K(\mathbf{x}_i, \mathbf{x}_j) = (\gamma \mathbf{x}_i^T \mathbf{x}_j + r)^d, \ \gamma > 0.$
- radial basis function (RBF): $K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\gamma ||\mathbf{x}_i \mathbf{x}_j||^2), \ \gamma > 0.$
- sigmoid: $K(\mathbf{x}_i, \mathbf{x}_j) = \tanh(\gamma \mathbf{x}_i^T \mathbf{x}_j + r)$.