
Introduction to machine learning II
• Classification

• Linear model: logistic regression
• Fitting of a model
• Statistical interpretation: maximum likelihood
• Perceptron
• Multi-class classification: multi-class logistic regression

• Generalization errors
• Overfitting
• Cross-validation

• Support vector machines
• Extension to multi-class classification
• Kernel SVMs



Classification
• Is to identify to which of of K known classes the input 
x belongs

• Suppose we are given N pairs of an observation and 
its associated true class

• Then we want to predict to which class a novel input 
x belongs

x

0,1,2,3,4,5,6,7,8,9

{dn}(n = 1, . . . , N){xn}(n = 1, . . . , N)



Classification
• The simplest case: two-class classification

• Also called as binary classification

• We encode d by one of the following two methods
• d is either 0 or 1
• d is either -1 or 1

• Example: problem of estimating gender of a person 
from his/her weight and height

x = [x1, x2]
>

male female
d = 0 or 1



Perceptron
• We choose the coding: d is -1 or 1 
• We design y(x) that predicts d as follows:

• Or equivalently

u(x,w) = w0 + w1x1 + · · ·+ wIxI

y(x,w) = f(w0 + w1x1 + · · ·+ wIxI)

x1

x2

y(x) =

⇢
1 if u(x) > 0

�1 otherwise

f(u) =

⇢
1 if u > 0

�1 otherwise

u(x) = w0 + w1x1 + w2x2 = 0

u

f



Perceptron
• We design a function measuring errors of prediction

• Update the weight using one sample
• Iterate this for samples 
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This procedure always decreases error at least for this sample

x1,x2, · · ·

The total sum of errors is not guaranteed to decrease for each 
update; nevertheless, this iteration will converge for a finite 

number of iterations in linearly separable cases

Set of misclassified 
samples



Linearly separable 
• A problem is called linearly separable if all the data points 

are correctly classified by a single hyperplane

Linearly separable

Linearly inseparable



Logistic regression
• The posterior probability of d=1 is modeled by y(x) ：

• We choose integration of a logistic function with a linear 
function for y(x)

y(x,w) =

1

1 + exp(�u(x,w))

u(x,w) = w0 + w1x1 + · · ·+ wIxI
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logistic sigmoid

f(u) =
1

1 + exp(�u)

p(d = 1 |x) ⇡ y(x) p(d = 0 |x) ⇡ 1� y(x)



Fitting to data
• We are given N pairs of an observation and its true class

• We wish to determine w that agrees well with these samples
• Toward this goal, we employ maximum likelihood estimation

• We choose the value of w that maximize the likelihood

• Or equivalently, we minimize more convenient negative log-
likelihood:

{dn}(n = 1, . . . , N){xn}(n = 1, . . . , N)

l(w) ⌘ p(d1, . . . , dN |x1, . . . ,xN ; w)

p(d1, . . . , dN |x1, . . . ,xN ) =
NY

n=1

p(dn |xn)

E(w) ⌘ � log l(w) = �
NX

n=1

log p(dn |xn)



Fitting to data
• We model the posterior probability of d=1 with y(x)

• Using one of standard tricks, we may represent p(d|x) as

• The negative log-likelihood  yields “cross-entropy loss function”

p(d |x) = {p(d = 1 |x)}d{p(d = 0 |x)}1�d

= {y(x,w)}d{(1� y(x,w))}1�d

p(d = 1 |x) ⇡ y(x)

= �
NX

n=1

{dn log y(xn,w) + (1� dn) log(1� y(xn,w))}

E(w) = �
NX

n=1

log p(dn |xn)



Computing optimal solutions
• The optimal solution cannot be determined uniquely unlike 

the case of linear regression
• We then resort to iterative methods such as

• Gradient descent
• Newtonʼs methods

w2

w1

E(w1, w2)

w2

w1



Multi-class classification
• 1-of-K coding is used for multi-class classification

• E.g., the third class of K=10 classes

d = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]>

x1

x2

x3

x4

x1

x2

x3

x4

y

y1

y2

y3

d = 0 or 1

d = [0, 0, 1] or [0, 1, 0] or [1, 0, 0]

Two-class classification Three-class classification

Logistic function Softmax

0  y  1 0  yk  1

X

k

yk = 1



Multi-class logistic regression
• We model the posterior of dk=1 with yk(x) ：

• We choose for y(x) linear function + softmax as follows:

• Note that the outputs can viewed as probabilities

p(dk = 1 |x) ⇡ yk(x)

yk(x) =
exp(uk)PK
j=1 exp(uj)

uk ⌘ u(x,wk) = wk0 + wk1x1 + · · ·+ wkIxI

KX

k=1

yk(x) = 1
KX

k=1

p(dk = 1 |x) = 1,

← softmax関数



Loss function of multi-class logistic regression
• How to derive a loss function?
• The joint probability may be written as 

• We employ maximum likelihood estimation:

• What we do is to minimize the following function:

=
KY

k=1

p(dk = 1|x)dk



Overfitting
• It is to fit a model to training samples excessively

• Also called overtraining

• E.g., Suppose fitting a linear func. And 10th-order 
polynomial func. to the same sample points:

https://commons.wikimedia.org/wiki/File:Overfitted_Data.png

y = a0 + a1x

y = a0 + a1x+ a2x
2 + · · ·+ a10x

10



Training error and generalization error
• Training error

• Sum (or average) of errors (loss values) for training samples
• Generalization error

• Expected error (loss value) for a novel sample
• Test error (or validation error)

• Sum (or average) of errors (loss values) for the samples at 
hand that were not used for training

E(w) =
NX

n=1

(dn � y(xn,w))2



Cross validation
• We usually split the set of samples into two, one for 

training and the other for test (or validation)
• Accuracy will vary depending on how we split 
• Cross validation is a method to evaluate accuracy by 

calculating the average accuracy for multiple different 
splits
• E.g., 5-fold cross validation

train

testSa
m

pl
es



Support vector machines (SVMs)
• Consider two class classification:

• Training samples:

• Classification:

• Consider minimization of 

(x1, d1), (x2, d2), · · · , (xN , dN )

dn = 1 or � 1

u(x,w) = w0 + w1x1 + · · ·+ wIxI

y(x) =
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1 if u(x) > 0

�1 otherwise
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>
x) � 1



Support vector machines (SVMs)
• We assume data are linearly separable
• We wish to find the two parallel hyperplanes that have the 

maximum distance between them and each of which 
separates the samples

• We then choose the parallel hyperplane that are equally 
distant to them

w0 +w

>
x = 1

w0 +w

>
x = �1

w0 +w

>
x = 0



Support vector machines (SVMs)
• For linearly non-separable samples, we consider the soft-

margin

• We can always obtain globally optimal solution for the 
problem 

Avoid excessive high evaluation 
of correctly classified samples
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Multi-class classification with two-class classifier
• One-versus-the-rest classifier is the most popular

1. Train k two-class classifiers y(x) that separates the class k and 
all other classes (the rest)

2. Regarding the output of the model y(x) as “score” of the class, 
classify the input into the class with the highest score

TVsChairs

Tables Sofas

argmax

k
yk(x)



Kernel SVMs (nonlinear SVMs)
• Project the feature space with a nonlinear transformation Φ; all 

the samples are projected to the new space
• Train a linear SVM in the new space using the projected samples 
• We do not need explicitly specify Φ; instead specify the inner-

product of two projected samples

�(x) k(xi,xj) = �(xi)
T�(xj)


