13. Machine learning II

« Neural networks (deep learning)
« Standardization of data
« Training neural networks

Neural networks: Units and activation functions

« A unit receives multiple input signals as their weighted sum,
passes it to a nonlinear function, and outputs a signal

« Simplified math model of a neuron 1
w1
U = W1x1 + woxo + w3x3 + waxg + b
o W2
z = flu
f(u) 2
« The func. fis called activation function T3 ws
« Various analytic funcs are used w0
4

64

Neural networks: single layer net

« Construct a layer of multiple units

« Denoting inputs to this layer by a vector x and outputs by z, we
can express the computation at this layer as

u= Wx+Db
or
z = f(u)
-ul- -$1_ -bl- -21-
u= X = b = 7 =
| | K74 123 | 2 |
—w11 Tt wlI— —f(Ul)-
W = f(u) =
| Wj1 . WJT | _f(UJ)_

Neural networks: multi-layer net

« Stack of multiple single-layer nets = a multi-layer net also
known as a feed-forward network

1st (input) layer — x = z'V

Propagation from ullt) = w0 4 pl+D)

Ith to (I+1)th layer Z(I+1) f(u(l“))

Lt (output) layer y =zD)

L0 [, [,®

Neural networks: Output layer and loss

« We give the output layer the same number of units as classes and
regard their output as probability (or likelihood) of the classes; kt"
output = probability of kth class

« Sigmoid func. or softmax func. are employed for activation func. of the
output layer
« Classes are encoded by a vector d of length K; if the class is k, then kth
element is 1 and all other elements are 0 (called one-hot/one-of-K)
« You can generate one-hot vectors for

10-class MNIST data by the following d = [dla da,. .., dK]
procedure:
>> A=eye(10,10); (L)
>> train d=A(train 1bl+l,:); p(ck|X) — Yk — %
>> test d=A(test 1bl+1l,:); M)
S —>
) O+— U
+ We assume here that O+— Y2
train 1bl & test 1lbl store
the label data of MNIST X O ¥
« Type these commands after Z(l) Z(2) Z(S) O1—> %
loading the data onto these : :
variables; see p.70 for details — i
g _— O+— Y10

Training a feed-forward network

« We are given a set of samples; each sample is a pair of an input X and
its target d (one-hot vector of the true class of the input)

S = {(Xl,dl),...,(XNadN)}

« Using this sample set, we want to train the neural net, where the goal is
to make the output y for x as close to d as possible

JRRRS ﬁ

A
/’ 4\\ A\ A\ \

v v v \ “V

> Yo < d,

Loss
— {(W(2), b(Q)), AL (W(L), b(L))} (difference between E(W, 8)
y and d)

Weights
of layers

« Thus, the problem becomes a minimization of the loss:

min F(w,S)

W

Software library

 In this course, we use the following library for MATLAB/Octave
« https://agithub.com/rasmusbergpalm/DeeplLearnToolbox

« The author declares the software is outdated and no longer
maintained; although better software such as tensorflow and torch

is available for deeplearning, they are not compact for the purpose
of this course;

« Download and extract a zip file from the course page, and then
do as follows:

>> addpath(‘DeepLearnToolbox/NN’)
>> addpath(‘DeepLearnToolbox/util‘)

Problem: MNIST handwritten digit recognition

« To train and test SVM, we used only a portion of 10,000 samples
belonging to t10k-* files

« Here we use 60,000 samples for training NNs and 10,000 for testing
them

« To load all the data, type as follows:

>> fid=fopen(’tl0k-images-idx3-ubyte’,’‘r’,‘'b’);
>> fread(fid,4,'int32’)

>> test img=fread(fid,[28%*28,10000], ‘uint8‘);
>> test img=test img’;

>> fclose(fid);

>> fid=fopen(’‘tl0k-labels-idxl-ubyte’,‘r’,‘b’);
>> fread(fid,2,‘int32")

>> test lbl=fread(fid, 10000, ‘uint8‘);

>> fclose(fid);

>> fid=fopen(’train-images-idx3-ubyte’,‘r’,‘'b’);
>> fread(fid,4,'int32’)

>> train img=fread(fid, [28*28,60000], ‘uint8*);
>> train_img=train img‘;

>> fclose(fid);

>> fid=fopen(’train-labels-idxl-ubyte’,‘r’,‘'b’);
>> fread(fid,2,‘int32’)

>> train lbl=fread(£id, 60000, ‘uint8‘);

>> fclose(fid);

Standardization of data (1/2)

« Data ‘in the wild" often distribute in the data space in an unfavorable
manner; applying a linear transform to make them distribute uniformly
usually helps training NNs and SVMs

« A transformation making the mean 0 and the variance 1 will work well

-
nth Sample X'n, — [xn]_y an, TR 733?1[]

N N
v - Ly]
n—=

g; n=1
mean variance
3 3f 3
2 2 .“:-E'.'I.‘ 1 2 :. S ..
e R R .
1 i d SR ’ IR e LA A
i 2 .'.:. . 2"‘,;':..&.?'»,}"#:‘ ,“ ':-..
of ot sty f of : X gt o ";ﬁ'.‘-".;. .
) ‘W- 4 . .-\.x:'..‘}:,-?..é'.; . ‘.
. e B T R 2
- -1r . ,::;;..{:h 1 - Ten et "°:'s.:'""' <
FOAR Lot .
-2t ; -2t . 2 . . .
3 -3r 3
3 2 1 0 1 2 3 3 -2 1 0 1 2 3 3 -2 1 0 1 2 3
standardization whitening

(normalization) (we don’t consider here)

Standardization of data (2/2)

 First, compute the mean M and standard deviation ¢ of training
samples X’s

>> mu = mean(train img);
>> sigma = max(std(train img), eps);

« Second, subtract p from each training sample and divide it by o
« Note that g and o are vectors of the same length as X's

>> train img = (train img — mu)./sigma;

N — element-wise division

« Third, apply the same transformation with the same g and o to

« Not allowed to use the mean and std. dev. of test samples; we may
use only information from training samples; explain why?

>> test img = (test img — mu)./sigma;

Experiments

« Design a two-layer NN with 784(=28x28) elements in the input, 100
units in the intermediate layer, and 10 units in the output layer

>> nn = nnsetup([784 100 10]);

« Train the net using the training samples

Number of times the net sees each sample during trainin
>> opts.numepochs = 1; «— P g g

>> opts.batchsize = 100;
>> [nn, L] = nntrain(nn, train img, train d, opts);

«— Ihe weights are updated once for this number of samples

« Evaluate performance of the trained net using test samples

SR

>> pred = nnpredict(nn, test img); —

>> pred(1:10)")

ans = - labels range from 1-10 in nnpredict
8 3 2 1 5 2 5 10 5 10

>> test 1bl(1:10)°
— labels range from 0-9 in orig. data

ans =

7 2 1 0 4 1 4 9 5 9 __
>> sum(pred-l==test 1bl)/10000*100 — 10 units
ans = 92.900 100 units

784 elems

Exercises 13.1

« You can run nntrain repeatedly; it will update the net incrementally
using the same training samples

« To perform this, just type:

>> [nn, L] = nntrain(nn, train img, train d, opts);

« If you want to reset the training, initialize the net as follows

>> nn = nnsetup([784 100 10]);

1. Repeat training for, say, 10 steps, from initialization and evaluate
performance of the net at each step; plot ‘training counts’-vs-‘accuracy’

2. Design a three-layer NN, for instance, having two intermediate layers
with 30 units each, and train it; and evaluate the difference in
performance from the earlier two-layer net

