
13. Machine learning II
• Neural networks (deep learning)
• Standardization of data
• Training neural networks
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Neural networks: Units and activation functions
• A unit receives multiple input signals as their weighted sum, 

passes it to a nonlinear function, and outputs a signal
• Simplified math model of a neuron

• The func. f is called activation function
• Various analytic funcs are used
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Neural networks: single layer net
• Construct a layer of multiple units
• Denoting inputs to this layer by a vector x and outputs by z, we 

can express the computation at this layer as
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Neural networks: multi-layer net
• Stack of multiple single-layer nets = a multi-layer net also 

known as a feed-forward network
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Neural networks: Output layer and loss
• We give the output layer the same number of units as classes and 

regard their output as probability (or likelihood) of the classes; kth

output = probability of kth class
• Sigmoid func. or softmax func. are employed for activation func. of the 

output layer
• Classes are encoded by a vector d of length K; if the class is k, then kth

element is 1 and all other elements are 0 (called one-hot/one-of-K)
• You can generate one-hot vectors for 

10-class MNIST data by the following
procedure:
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y10

>> A=eye(10,10);
>> train_d=A(train_lbl+1,:);
>> test_d=A(test_lbl+1,:);

d = [d1, d2, . . . , dK ]

• We assume here that 
train_lbl & test_lbl store 
the label data of MNIST

• Type these commands after 
loading the data onto these 
variables; see p.70 for details

67



Training a feed-forward network
• We are given a set of samples; each sample is a pair of an input x and 

its target d (one-hot vector of the true class of the input)

• Using this sample set, we want to train the neural net, where the goal is 
to make the output y for x as close to d as possible

• Thus, the problem becomes a minimization of the loss:

……… … … ↔

Loss
(difference between

y and d)

Weights
of layers w = {(W(2),b(2)), · · · , (W(L),b(L))} E(w,S)

S = {(x1,d1), . . . , (xN ,dN )}

min
w

E(w,S)

xn yn dn
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Software library
• In this course, we use the following library for MATLAB/Octave

• https://github.com/rasmusbergpalm/DeepLearnToolbox
• The author declares the software is outdated and no longer 

maintained; although better software such as tensorflow and torch 
is available for deeplearning, they are not compact for the purpose 
of this course; 

• Download and extract a zip file from the course page, and then 
do as follows:
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>> addpath(‘DeepLearnToolbox/NN’)
>> addpath(‘DeepLearnToolbox/util‘)



Problem: MNIST handwritten digit recognition
• To train and test SVM, we used only a portion of 10,000 samples 

belonging to t10k-* files
• Here we use 60,000 samples for training NNs and 10,000 for testing 

them
• To load all the data, type as follows:
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>> fid=fopen(‘t10k-images-idx3-ubyte‘,‘r‘,‘b‘);
>> fread(fid,4,‘int32‘)
>> test_img=fread(fid,[28*28,10000],‘uint8‘);
>> test_img=test_img‘;
>> fclose(fid);

>> fid=fopen(‘t10k-labels-idx1-ubyte‘,‘r‘,‘b‘);
>> fread(fid,2,‘int32‘)
>> test_lbl=fread(fid,10000,‘uint8‘);
>> fclose(fid);

>> fid=fopen(‘train-images-idx3-ubyte‘,‘r‘,‘b‘);
>> fread(fid,4,‘int32‘)
>> train_img=fread(fid,[28*28,60000],‘uint8‘);
>> train_img=train_img‘;
>> fclose(fid);

>> fid=fopen(‘train-labels-idx1-ubyte‘,‘r‘,‘b‘);
>> fread(fid,2,‘int32‘)
>> train_lbl=fread(fid,60000,‘uint8‘);
>> fclose(fid);
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Standardization of data (1/2)
• Data ʻin the wildʼ often distribute in the data space in an unfavorable 

manner; applying a linear transform to make them distribute uniformly 
usually helps training NNs and SVMs
• A transformation making the mean 0 and the variance 1 will work well

xn = [xn1, xn2, . . . , xnI ]
>
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mean variance

standardization
(normalization)

whitening
(we donʼt consider here)
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Standardization of data (2/2)
• First, compute the mean μ and standard deviation σ of training 

samples xʼs

• Second, subtract μ from each training sample and divide it by σ
• Note that μ and σ are vectors of the same length as xʼs

• Third, apply the same transformation with the same μ and σ to 
• Not allowed to use the mean and std. dev. of test samples; we may 

use only information from training samples; explain why?

>> mu = mean(train_img);
>> sigma = max(std(train_img), eps);

>> test_img = (test_img – mu)./sigma;

>> train_img = (train_img – mu)./sigma;
element-wise division
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Experiments
• Design a two-layer NN with 784(=28x28) elements in the input, 100 

units in the intermediate layer, and 10 units in the output layer

• Train the net using the training samples

• Evaluate performance of the trained net using test samples
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>> nn = nnsetup([784 100 10]);

x

784 elems
100 units

10 units

y

>> pred = nnpredict(nn, test_img);
>> pred(1:10)‘
ans =

8   3   2   1   5   2   5  10   5  10
>> test_lbl(1:10)‘
ans = 

7   2   1   0   4   1   4   9   5   9
>> sum(pred-1==test_lbl)/10000*100
ans =  92.900

>> opts.numepochs = 1;
>> opts.batchsize = 100;
>> [nn, L] = nntrain(nn, train_img, train_d, opts);

Number of times the net sees each sample during training

The weights are updated once for this number of samples

labels range from 1-10 in nnpredict

labels range from 0-9 in orig. data



Exercises 13.1
• You can run nntrain repeatedly; it will update the net incrementally 

using the same training samples
• To perform this, just type:

• If you want to reset the training, initialize the net as follows

1. Repeat training for, say, 10 steps, from initialization and evaluate 
performance of the net at each step; plot ʻtraining countsʼ-vs-ʼaccuracyʼ

2. Design a three-layer NN, for instance, having two intermediate layers 
with 30 units each, and train it; and evaluate the difference in 
performance from the earlier two-layer net
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>> [nn, L] = nntrain(nn, train_img, train_d, opts);

>> nn = nnsetup([784 100 10]);


