Multi-view 3D reconstruction

« Problem formulation

« Projective ambiguity

« Rectification

« Autocalibration

« Feature points and their matching



Problem

« Given m images of n scene points captured from different
viewpoints, we want to estimate the 3D coordinates of the n

points and the camera matrices of the m views
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Applications

3D modeling from unsorted images [Snavely+04, Agarwal+10]

Input photos Sparse reconstruction Dense reconstruction

Autodesk 123D Catch PTAM [Klein+07]

CATCH




Projective ambiguity

« Solutions are ambiguous
« Images alone cannot resolve this ambiguity

X§Z) X PZ'X]' — PiH_lHXj — (PiH_l)(HXj) — P;X;

« There is ambiguity of 15 DoFs, which corresponds to 3D projective
transformation
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Fundamental ambiguity

« Projective ambiguity contains more fundamental ambiguity,
which we usually leave as it is; 7 out of 15 DoFs

« Equal to a similarity trans.
« Choice of the world coordinates + scaling ambiguity
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Rectification of 3D reconstruction

« 3D reconstruction up to projective ambiguity is called projective
reconstruction

« There are also affine reconstruction and similarity reconstruction
« Given a projective reconstruction of a scene:
(Pi,Xj) (Z: 1,...,m,j: 1,...,72,)

we wish to find H such that the transformed reconstruction
P; =PH X, =H'X;

gives a similarity (or an affine) reconstruction of the scene



Rectification of 3D reconstruction

« 3D reconstruction up to projective ambiguity is called projective
reconstruction

« There are also affine reconstruction and similarity reconstruction

« Rectification: Given a projective reconstruction of a scene, we
wish to rectify it to its affine or similarity reconstruction

00 og 2 O

Original Similarity Affine Projective
(Euclidean)
Hg Hp
Fundamental ambiguity Identifying 7
Ha
Hp

Identifying .,



Affine rectification

« Suppose that we can identify the projection 7w of 7 in a
projective reconstruction

+ Find a projective trans. from the projective to an affine
reconstruction

« Trans. mapping 7™ to T

To(=10 0 0 1]) Hy, 7
R
Hp = | ~ < Hpmop X7

« How can we identify the image of 7 ?
« E.g., Find three pairs of parallel lines in
the scene, from which we can find the
projections of three points at infinity



Similarity rectification

« Consider rectifying a projective reconstruction to a similarity
reconstruction by P; = P;H, X/ = H !X,

« Similarity reconstruction is a reconstruction obtained by
applying a similarity transform to the true reconstruction (i.e.,
the fundamental ambiqguity); thus, the transformed camera
matrix should be

P; _ P,Etme)HS _ K, [Rz' ti] He = K; [RiR R;t + tii| Hg = [SR t]

o' 1

- In short, we wish to find H such that P; = P,H =K; |R, t!]

« Remark:
« Similarity rectification is equivalent to knowing K;

« Any P, can be decomposed into the form of K; [Ri tz-] ; we need
additional info. about the scene or the cameras



Autocalibration (self-calibration)

Suppose we do not have knowledge about the scene

If we have no knowledge about the cameras, either, then
projective reconstruction is the maximum we can hope for

If we have at least partial knowledge about the internal
parameters K; of the camera(s), then we can fully calibrate the
camera(s) and obtain a similarity reconstruction

« Usual setting: only focal lengths are unknown; or plus image
centers; and plus lens distortion; all others are known

« We may assume that usually skew = 0 and aspect = 1; sometimes
image center is merely the center of image; however, focal length
is difficult to know beforehand, due to focusing and zooming

« There is the minimum number of images necessary for each setting
- Details are given in the section ‘Bundle Adjustment’



Problem

« Given m images of n scene points captured from different
viewpoints, we want to estimate the 3D coordinates of the n
points and the camera matrices of the m views

Geometric model
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Key points

« What are good key points?
« Points are good if we can determine their positions in images as

precisely as possible

(b) (c) (d)

Figure 4.5 Three auto-correlation surfaces E4c{Awu) shown as both grayscale images and
surface plots: (a) The original image is marked with three red crosses to denote where the
auto-correlation surfaces were computed; (b) this patch is from the flower bed (good unique
minimum); (c) this patch is from the roof edge (one-dimensional aperture problem); and (d)
this patch is from the cloud (no good peak). Each grid point in figures b—d is one value of

Au.
[Szeliski2010]



Key points

« How can we measure such goodness of points?

 Answer:
« The brightness must have as sharp a peak as possible
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SIFT (Scale Invariant Feature Transform)

Lowe, Object recognition from local scale-invariant features, ICCV99

«  We wish to match image points of an identical scene point on
multi-view images

1. Key point
 Invariant to scale and orientation
2. Descriptor

« Image feature that is invariant to
scale and orientation




SIFT: Keypoint

« Extrema of DoG in scale space are chosen as keypoints
« DoG: Difference of Gaussian
« Scale is automatically chosen, obtaining invariance to scale

« Scale space
« A series of images that are blurred by Gaussian filters




SIFT: Descriptors

« Besides the scale, principal orientation is determined
« The peak of orientation histogram (36 bins) is chosen
« Enables rotation invariance

« A square is chosen in accordance with the chosen orientation
and scale; then, it is divided into boxes, for each of them an
orientation histogram is generated
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Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradient magnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.




Matching keypoints: nearest neighbor search

« Comparing distances
between descriptors
Keypoints and descriptors

SRS are invariant to scale and
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