Multi-view 3D reconstruction

- Problem formulation
- Projective ambiguity
- Rectification
- Autocalibration
- Feature points and their matching

Problem

- Given m images of n scene points captured from different viewpoints, we want to estimate the 3D coordinates of the n points and the camera matrices of the m views

Geometric model

Applications

3D modeling from unsorted images [Snavely+04, Agarwal+10]

Input photos
Autodesk 123D Catch

Sparse reconstruction

Dense reconstruction

Projective ambiguity

- Solutions are ambiguous
- Images alone cannot resolve this ambiguity

$$
\mathbf{x}_{j}^{(i)} \propto \mathrm{P}_{i} \mathbf{X}_{j}=\mathrm{P}_{i} \mathrm{H}^{-1} \mathrm{H} \mathbf{X}_{j}=\left(\mathrm{P}_{i} \mathrm{H}^{-1}\right)\left(\mathrm{H} \mathbf{X}_{j}\right)=\mathrm{P}_{i}^{\prime} \mathrm{X}_{j}^{\prime}
$$

- There is ambiguity of 15 DoFs, which corresponds to 3D projective transformation

Fundamental ambiguity

- Projective ambiguity contains more fundamental ambiguity, which we usually leave as it is; 7 out of 15 DoFs
- Equal to a similarity trans.
- Choice of the world coordinates + scaling ambiguity

How do we choose the world coordinates?

Absolute scale cannot be determined from image(s)

Rectification of 3D reconstruction

- 3D reconstruction up to projective ambiguity is called projective reconstruction
- There are also affine reconstruction and similarity reconstruction
- Given a projective reconstruction of a scene:

$$
\left(\mathrm{P}_{i}, \mathbf{X}_{j}\right)(i=1, \ldots, m, j=1, \ldots, n)
$$

we wish to find H such that the transformed reconstruction

$$
\mathrm{P}_{i}^{\prime}=\mathrm{P}_{i} \mathrm{H} \quad \mathbf{X}_{j}^{\prime}=\mathrm{H}^{-1} \mathbf{X}_{j}
$$

gives a similarity (or an affine) reconstruction of the scene

Rectification of 3D reconstruction

- 3D reconstruction up to projective ambiguity is called projective reconstruction
- There are also affine reconstruction and similarity reconstruction
- Rectification: Given a projective reconstruction of a scene, we wish to rectify it to its affine or similarity reconstruction

Affine rectification

- Suppose that we can identify the projection π of π_{∞} in a projective reconstruction
- Find a projective trans. from the projective to an affine reconstruction
- Trans. mapping π to π_{∞}

$$
\begin{aligned}
\pi_{\infty}\left(=\left[\begin{array}{lll}
0 & 0 & 0 \\
1
\end{array}\right]\right) & \propto \mathrm{H}_{P}^{-\top} \pi \\
& \mathrm{H}_{P}=\left[\begin{array}{cc}
\mathrm{I} & \mathbf{0} \\
\pi^{\top} &
\end{array}\right] \Leftarrow \mathrm{H}_{P}^{\top} \pi_{\infty} \propto \pi
\end{aligned}
$$

- How can we identify the image of π_{∞} ?
- E.g., Find three pairs of parallel lines in the scene, from which we can find the projections of three points at infinity

Similarity rectification

- Consider rectifying a projective reconstruction to a similarity reconstruction by $\mathrm{P}_{i}^{\prime}=\mathrm{P}_{i} \mathrm{H}, \mathbf{X}_{j}^{\prime}=\mathrm{H}^{-1} \mathbf{X}_{j}$
- Similarity reconstruction is a reconstruction obtained by applying a similarity transform to the true reconstruction (i.e., the fundamental ambiguity); thus, the transformed camera matrix should be

$$
\mathrm{P}_{i}^{\prime}=\mathrm{P}_{i}^{(t r u e)} \mathrm{H}_{S}=\mathrm{K}_{i}\left[\begin{array}{ll}
\mathrm{R}_{i} & \mathbf{t}_{i}
\end{array}\right] \mathrm{H}_{S}=\mathrm{K}_{i}\left[\begin{array}{ll}
\mathrm{R}_{i} \mathrm{R} & \mathrm{R}_{i} \mathbf{t}+\mathbf{t}_{i}
\end{array}\right] \quad \mathrm{H}_{S}=\left[\begin{array}{ll}
s \mathrm{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]
$$

- In short, we wish to find H such that $\mathrm{P}_{i}^{\prime}=\mathrm{P}_{i} \mathrm{H}=\mathrm{K}_{i}\left[\begin{array}{ll}\mathrm{R}_{i}^{\prime} & \mathrm{t}_{i}^{\prime}\end{array}\right]$
- Remark:
- Similarity rectification is equivalent to knowing K_{i}
- Any P_{i} can be decomposed into the form of $\mathrm{K}_{i}\left[\begin{array}{ll}\mathrm{R}_{i} & \mathbf{t}_{i}\end{array}\right]$; we need additional info. about the scene or the cameras

Autocalibration (self-calibration)

- Suppose we do not have knowledge about the scene
- If we have no knowledge about the cameras, either, then projective reconstruction is the maximum we can hope for
- If we have at least partial knowledge about the internal parameters K_{i} of the camera(s), then we can fully calibrate the camera(s) and obtain a similarity reconstruction
- Usual setting: only focal lengths are unknown; or plus image centers; and plus lens distortion; all others are known
- We may assume that usually skew $=0$ and aspect $=1$; sometimes image center is merely the center of image; however, focal length is difficult to know beforehand, due to focusing and zooming
- There is the minimum number of images necessary for each setting \rightarrow Details are given in the section 'Bundle Adjustment'

Problem

- Given m images of n scene points captured from different viewpoints, we want to estimate the 3D coordinates of the n points and the camera matrices of the m views

Geometric model

Key points

- What are good key points?
- Points are good if we can determine their positions in images as precisely as possible

(a)

(b)

(c)

(d)

Figure 4.5 Three auto-correlation surfaces $E_{\mathrm{AC}}(\Delta \boldsymbol{u})$ shown as both grayscale images and surface plots: (a) The original image is marked with three red crosses to denote where the auto-correlation surfaces were computed; (b) this patch is from the flower bed (good unique minimum); (c) this patch is from the roof edge (one-dimensional aperture problem); and (d) this patch is from the cloud (no good peak). Each grid point in figures b-d is one value of Δu.

Key points

- How can we measure such goodness of points?
- Answer:
- The brightness must have as sharp a peak as possible
- Having a peak = the two eigenvalues of \mathbf{A} are both large enough

$$
\begin{aligned}
f(\mathbf{u}) & =\sum_{\mathbf{x} \in D}[I(\mathbf{x}+\mathbf{u})-I(\mathbf{x})]^{2} \\
& \approx \sum_{\mathbf{x} \in D}\left[I(\mathbf{x})+\nabla I(\mathbf{x})^{\top} \mathbf{u}-I(\mathbf{x})\right]^{2} \quad \nabla I(\mathbf{x})=\left[\begin{array}{l}
I_{x}(\mathbf{x}) \\
I_{y}(\mathbf{x})
\end{array}\right] \\
& =\sum_{\mathbf{u} \in D} \mathbf{u}^{\top} \nabla I(\mathbf{x}) \nabla I(\mathbf{x})^{\top} \mathbf{u} \\
& =\mathbf{u}^{\top} \mathbf{A} \mathbf{u} \quad \mathbf{A}=\sum_{\mathbf{x} \in D}\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]=\lambda_{0} \mathbf{e}_{0} \mathbf{e}_{0}^{\top}+\lambda_{1} \mathbf{e}_{1} \mathbf{e}_{1}^{\top}
\end{aligned}
$$

Harris-
Stephens(1988): $\operatorname{det}(\mathbf{A})-\alpha \operatorname{trace}(\mathbf{A})^{2}=\lambda_{0} \lambda_{1}-\alpha\left(\lambda_{0}+\lambda_{1}\right)^{2}$
$\begin{aligned} & \text { Brown-Szeliski- } \\ & \text { Winder(2005): }\end{aligned} \frac{\operatorname{det}(\mathbf{A})}{\operatorname{trace}(\mathbf{A})}=\frac{\lambda_{0} \lambda_{1}}{\lambda_{0}+\lambda_{1}}$

SIFT (Scale Invariant Feature Transform)

Lowe, Object recognition from local scale-invariant features, ICCV99

- We wish to match image points of an identical scene point on multi-view images

1. Key point

- Invariant to scale and orientation

2. Descriptor

- Image feature that is invariant to scale and orientation

SIFT: Keypoint

- Extrema of DoG in scale space are chosen as keypoints
- DoG: Difference of Gaussian
- Scale is automatically chosen, obtaining invariance to scale
- Scale space
- A series of images that are blurred by Gaussian filters

SIFT: Descriptors

- Besides the scale, principal orientation is determined
- The peak of orientation histogram (36 bins) is chosen
- Enables rotation invariance
- A square is chosen in accordance with the chosen orientation and scale; then, it is divided into boxes, for each of them an orientation histogram is generated

Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientation at each image sample point in a region around the keypoint location, as shown on the left. These are weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated into orientation histograms summarizing the contents over 4×4 subregions, as shown on the right, with the length of each arrow corresponding to the sum of the gradient magnitudes near that direction within the region. This figure shows a $2 x 2$ descriptor array computed from an 8×8 set of samples, whereas the experiments in this paper use 4×4 descriptors computed from a 16×16 sample array.

Matching keypoints: nearest neighbor search

