
Multi-view 3D reconstruction
• Problem formulation
• Projective ambiguity
• Rectification
• Autocalibration
• Feature points and their matching



Problem
• Given m images of n scene points captured from different 

viewpoints, we want to estimate the 3D coordinates of the n 
points and the camera matrices of the m views
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Applications

PTAM [Klein+07]Autodesk 123D Catch

3D modeling from unsorted images [Snavely+04, Agarwal+10]



Projective ambiguity
• Solutions are ambiguous

• Images alone cannot resolve this ambiguity

• There is ambiguity of 15 DoFs, which corresponds to 3D projective 
transformation
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Fundamental ambiguity
• Projective ambiguity contains more fundamental ambiguity, 

which we usually leave as it is; 7 out of 15 DoFs
• Equal to a similarity trans.
• Choice of the world coordinates + scaling ambiguity

How do we choose 
the world coordinates?

Absolute scale cannot be 
determined from image(s)



Rectification of 3D reconstruction
• 3D reconstruction up to projective ambiguity is called projective 

reconstruction
• There are also affine reconstruction and similarity reconstruction

• Given a projective reconstruction of a scene:

we wish to find H such that the transformed reconstruction

gives a similarity (or an affine) reconstruction of the scene

(Pi,Xj) (i = 1, . . . ,m, j = 1, . . . , n)
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Rectification of 3D reconstruction
• 3D reconstruction up to projective ambiguity is called projective 

reconstruction
• There are also affine reconstruction and similarity reconstruction

• Rectification: Given a projective reconstruction of a scene, we 
wish to rectify it to its affine or similarity reconstruction
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Affine rectification
• Suppose that we can identify the projection    of       in a 

projective reconstruction
• Find a projective trans. from the projective to an affine 

reconstruction
• Trans. mapping     to    

• How can we identify the image of       ?
• E.g., Find three pairs of parallel lines in 

the scene, from which we can find the 
projections of three points at infinity
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Similarity rectification
• Consider rectifying a projective reconstruction to a similarity 

reconstruction by              ,
• Similarity reconstruction is a reconstruction obtained by 

applying a similarity transform to the true reconstruction (i.e., 
the fundamental ambiguity); thus, the transformed camera 
matrix should be 

• In short, we wish to find     such that 
• Remark:

• Similarity rectification is equivalent to knowing     
• Any     can be decomposed into the form of                 ; we need 

additional info. about the scene or the cameras 
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Autocalibration (self-calibration)
• Suppose we do not have knowledge about the scene
• If we have no knowledge about the cameras, either, then 

projective reconstruction is the maximum we can hope for
• If we have at least partial knowledge about the internal 

parameters     of the camera(s), then we can fully calibrate the 
camera(s) and obtain a similarity reconstruction
• Usual setting: only focal lengths are unknown; or plus image 

centers; and plus lens distortion; all others are known
• We may assume that usually skew = 0 and aspect = 1; sometimes 

image center is merely the center of image; however, focal length 
is difficult to know beforehand, due to focusing and zooming

• There is the minimum number of images necessary for each setting 
à Details are given in the section ʻBundle Adjustmentʼ

Ki



Problem
• Given m images of n scene points captured from different 

viewpoints, we want to estimate the 3D coordinates of the n 
points and the camera matrices of the m views
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Key points
• What are good key points?
• Points are good if we can determine their positions in images as 

precisely as possible

[Szeliski2010]



Key points
• How can we measure such goodness of points?
• Answer: 

• The brightness must have as sharp a peak as possible 
• Having a peak = the two eigenvalues of A are both large enough
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SIFT (Scale Invariant Feature Transform)

• We wish to match image points of an identical scene point on 
multi-view images

Lowe, Object recognition from local scale-invariant features, ICCV99

1. Key point 
• Invariant to scale and orientation

2. Descriptor
• Image feature that is invariant to 

scale and orientation



SIFT: Keypoint
• Extrema of DoG in scale space are chosen as keypoints

• DoG: Difference of Gaussian
• Scale is automatically chosen, obtaining invariance to scale

• Scale space
• A series of images that are blurred by Gaussian filters

DoG f(x, y, s)



SIFT: Descriptors
• Besides the scale, principal orientation is determined 

• The peak of orientation histogram (36 bins) is chosen
• Enables rotation invariance

• A square is chosen in accordance with the chosen orientation 
and scale; then, it is divided into boxes, for each of them an 
orientation histogram is generated 



Matching keypoints: nearest neighbor search
• Comparing distances 

between descriptors
• Keypoints and descriptors 

are invariant to scale and 
rotation

Space of descriptors


