
Two-view geometry
• epipolar points/lines
• fundamental matrix
• essential matrix
• estimation of relative camera pose



Two-view geometry
• Also known as epipolar geometry
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Two-view geometry
• Specifying    , you have
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Two-view geometry

A case when the epipole is at infinity
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Fundamental matrix
• The epipolar line    specified by    is given as

• is a constant 3x3 matrix defined for a pair of views, which is 
called the fundamental matrix
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A matrix representing vector cross product
• For a 3-vector    ,         is defined to be a 3x3 matrix satisfying

• It is given by

• is a skew-symmetric matrix, i.e.,    
• has rank        , because
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Properties of fundamental matrix
• gives the relation for the reverse order of views:

• ,  because
• and               , because any epipolar line    passes   ;         

thus             , and                ; this should hold for any
• has rank 2, because

• Any matrix of rank 2 can be a fundamental matrix; proof omitted

• The DoF of     is seven; 3 x 3 – 1(scaling) – 1(rank=2) = 7  
• represents the geometric relation of a pair of uncalibrated 

cameras in a complete and concise manner
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Deriving camera matrices from 
• Proposition: Given a fundamental matrix    of two views, the 

camera matrices of the two views are given as

• where    is any skew-symmetric matrix and    is the epipole:

• Remark: the above gives a projective reconstruction

• Lemma of the proposition: If    is a fundamental matrix of two 
views having camera matrices    and   , then           is skew-
symmetric, and vice versa
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Deriving camera matrices from 
• Proof of Lemma:  If a matrix    is skew-symmetric, then it holds 

that for any   ,                 and vice versa
• Therefore, if            is skew-symmetric,                          for 

any    , and vice versa 
• We may set                 and              , resulting in 

• Proof of proposition: We only need to show           is skew-
symmetric; this is done as follows
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Essential matrix
• is called the essential matrix   

• gives a two-view relation similar to    when the camera(s) are 
calibrated
• Substituting                                     and                

into                  ,  we have 

• Properties:
• Denote the coordinate trans. between the two camera coord. 

by                      ; then 
• DoF of     is five (rotation + translation – scaling)
• A 3x3 matrix     is an essential matrix if and only if the two of its 

singular values are identical and the rest is zero; proof omitted
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Essential matrix
• Proof of
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Essential matrix
• If    is an essential matrix, then its singular values is

• is of rank 2 just like

• Given   , we can obtain    and     as shown below

• The SVD of     is given as

• Suppose the camera matrix of 1st view to be

• Then, 2nd camera matrix should be one of the four matrices:
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Obtaining R and t from E
• Four solutions and relative camera poses

• A single solution is physically possible: 3D points will be in front of 
both the cameras for only one case (“chirality check”) 
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Application of epipolar (two-view) geometry
• Finding point correspondences between two images

• Starting from     (seven point matches) or      (five)
• Once epipolar geometry is obtained, you need only to search along 

the epipolar line for the corresponding point 
• Robust correspondence estimation: RANSAC etc.

• Reconstructing 3D structure or camera poses
• Projective reconstruction from 

• Similarity reconstruction from 
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Summary: matrix decompositions
• SVD; singular value decomposition

• Any           matrix     can be decomposed as
• and     are orthogonal:
• is diagonal whose diagonal entries are called singular values
• Unique if singular values are sorted in descending order

• QR decomposition
• Any           matrix      can be decomposed as
• is orthogonal (            ) and   is an upper-right triangular matrix
• Decomposition is unique

• Cholesky decomposition
• Any           positive definite symmetric matrix    can be 

decomposed as
• L is a lower-left triangular matrix

＝

＝

＝

m⇥ n

m⇥m

A = UWV>

m⇥m

V>V = IU>U = IU V

W

A = QR

A

A

Q Q>Q = I R

A
A = LL>


