## Two-view geometry

- epipolar points/lines
- fundamental matrix
- essential matrix
- estimation of relative camera pose


## Two-view geometry

- Also known as epipolar geometry



## Two-view geometry

- Specifying $\mathbf{x}$, you have $\mathbf{l}^{\prime}$



## Two-view geometry

- Specifying $\mathbf{x}$, you have $\mathbf{l}^{\prime}$


A case when the epipole is at infinity

[Hartley-Zisserman03]

## Fundamental matrix

- The epipolar line $\mathbf{l}^{\prime}$ specified by $\mathbf{x}$ is given as

$$
\mathrm{l}^{\prime}=\mathrm{Fx}
$$

- F is a constant $3 \times 3$ matrix defined for a pair of views, which is called the fundamental matrix

Suppose a plane $\pi$ that does not pass $C$ or $C^{\prime}$

Then there is a 2D projective transformation $\mathbf{x}^{\prime} \propto \mathrm{Hx}$
$\mathbf{l}^{\prime}$ is given by $\mathbf{l}^{\prime}=\left[\mathbf{e}^{\prime}\right]_{\times} \mathbf{x}^{\prime}$

$$
\begin{aligned}
& =\left[\mathbf{e}^{\prime}\right]_{\times} \mathrm{H} \mathbf{x} \\
& =\left(\left[\mathbf{e}^{\prime}\right]_{\times} \mathrm{H}\right) \mathbf{x} \\
\mathbf{F} & =\left(\left[\mathbf{e}^{\prime}\right]_{\times} \mathrm{H}\right)
\end{aligned}
$$



## A matrix representing vector cross product

- For a 3 -vector $\mathbf{v},[\mathbf{v}]_{\times}$is defined to be a $3 \times 3$ matrix satisfying

$$
\mathbf{v} \times \mathbf{x}=[\mathbf{v}]_{\times} \mathbf{x}
$$

- It is given by

$$
[\mathbf{v}]_{\times}=\left[\begin{array}{ccc}
0 & -v_{3} & v_{2} \\
v_{3} & 0 & -v_{1} \\
-v_{2} & v_{1} & 0
\end{array}\right]
$$

- $[\mathbf{v}]_{\times}$is a skew-symmetric matrix, i.e., $[\mathbf{v}]_{\times}^{\top}=-[\mathbf{v}]_{\times}$
- $[\mathbf{v}]_{\times}$has rank $\leq 2$, because $[\mathbf{v}]_{\times} \mathbf{v}=\mathbf{0}$


## Properties of fundamental matrix

- $\mathrm{F}^{\top}$ gives the relation for the reverse order of views:

$$
\mathrm{l}^{\prime}=\mathrm{Fx} \quad \mathrm{l}=\mathrm{F}^{\top} \mathrm{x}^{\prime}
$$

- $\mathrm{x}^{\prime \top} \mathrm{Fx}=0$, because $\mathrm{x}^{\prime \top} \mathbf{l}^{\prime}=0$
- $\mathrm{Fe}=\mathbf{0}$ and $\mathrm{F}^{\top} \mathbf{e}^{\prime}=\mathbf{0}$, because any epipolar line 1 passes $\mathbf{e}$; thus $\mathbf{l}^{\top} \mathbf{e}=0$, and $\mathbf{x}^{\prime \top} \mathrm{Fe}=0$; this should hold for any $\mathrm{x}^{\prime}$
- $F$ has rank 2, because $F=\left[e^{\prime}\right]_{\times} H$
- Any matrix of rank 2 can be a fundamental matrix; proof omitted
- The DoF of F is seven; $3 \times 3-1$ (scaling) -1 (rank=2) $=7$
- F represents the geometric relation of a pair of uncalibrated cameras in a complete and concise manner


## Deriving camera matrices from F

- Proposition: Given a fundamental matrix F of two views, the camera matrices of the two views are given as

$$
\mathrm{P}=\left[\begin{array}{ll}
\mathrm{I} & \mathbf{0}
\end{array}\right] \quad \mathrm{P}^{\prime}=\left[\begin{array}{ll}
\mathrm{SF} & \mathbf{e}^{\prime}
\end{array}\right]
$$

- where S is any skew-symmetric matrix and $\mathrm{e}^{\prime}$ is the epipole:

$$
\mathbf{e}^{\prime \top} \mathrm{F}=\mathbf{0}^{\top}
$$

- Remark: the above gives a projective reconstruction
- Lemma of the proposition: If F is a fundamental matrix of two views having camera matrices $P$ and $P^{\prime}$, then $P^{\prime \top} F P$ is skewsymmetric, and vice versa

Skew-symmetric: $\mathrm{A}^{\top}=-\mathrm{A}$

## Deriving camera matrices from F

- Proof of Lemma: If a matrix $A$ is skew-symmetric, then it holds that for any $\mathbf{x}, \mathbf{x}^{\top} \mathrm{Ax}=0$ and vice versa
- Therefore, if $P^{\prime \top} F P$ is skew-symmetric, $\mathbf{X}^{\top} P^{\prime \top} F P \mathbf{X}=0$ for any $\mathbf{X}$, and vice versa
- We may set $\mathbf{x}^{\prime} \propto \mathrm{P}^{\prime} \mathbf{X}$ and $\mathbf{x} \propto \mathrm{PX}$, resulting in $\mathbf{x}^{\prime \top} \mathbf{F x}=0$
- Proof of proposition: We only need to show $\mathrm{P}^{\prime \top} \mathrm{FP}$ is skewsymmetric; this is done as follows

$$
\begin{aligned}
\mathrm{P}^{\prime \top} \mathrm{FP} & =\left[\begin{array}{ll}
\mathrm{SF} & \mathbf{e}^{\prime}
\end{array}\right]^{\top} \mathrm{F}\left[\begin{array}{ll}
\mathrm{I} & \mathbf{0}
\end{array}\right] \\
& =\left[\begin{array}{cc}
-\mathrm{F}^{\top} \mathrm{SF} & \mathbf{0} \\
\mathbf{e}^{\prime \top} \mathrm{F} & 0
\end{array}\right]=\left[\begin{array}{cc}
-\mathrm{F}^{\top} \mathrm{SF} & \mathbf{0} \\
\mathbf{0}^{\top} & 0
\end{array}\right]
\end{aligned}
$$

## Essential matrix

- $\mathrm{E} \equiv \mathrm{K}^{\prime \top} \mathrm{FK}$ is called the essential matrix
- E gives a two-view relation similar to F when the camera(s) are calibrated
- Substituting $\mathbf{x} \propto \mathrm{K} \tilde{\mathbf{X}}=\mathrm{K}\left[\begin{array}{lll}X & Y & Z\end{array}\right]^{\top}$ and $\mathrm{x}^{\prime} \propto \mathrm{K}^{\prime} \tilde{\mathbf{X}}^{\prime}=\mathrm{K}^{\prime}\left[\begin{array}{lll}X^{\prime} & Y^{\prime} & Z^{\prime}\end{array}\right]^{\top}$ into $\mathrm{x}^{\prime \top} \mathrm{Fx}=0$, we have

$$
\mathbf{x}^{\prime \top} F \mathbf{x}=\tilde{\mathbf{X}}^{\prime \top} K^{\prime \top} F K \tilde{\mathbf{X}}=\tilde{\mathbf{X}}^{\prime \top}\left(\mathrm{K}^{\prime \top} \mathrm{FK}\right) \tilde{\mathbf{X}}=0
$$

- Properties:
- Denote the coordinate trans. between the two camera coord. by $\tilde{\mathbf{X}}^{\prime}=\mathrm{R} \tilde{\mathbf{X}}+\mathbf{t}$; then $\mathrm{E}=[\mathbf{t}]_{\times} \mathrm{R}$
- DoF of E is five (rotation + translation - scaling)
- A $3 \times 3$ matrix $E$ is an essential matrix if and only if the two of its singular values are identical and the rest is zero; proof omitted


## Essential matrix

- Proof of $E=[t]_{\times} R$

Coordinate trans. from $1^{\text {st }}$ to $2^{\text {nd }}$ camera:


$$
\tilde{\mathbf{X}}^{\prime}=R \tilde{\mathbf{X}}+\mathbf{t}
$$

The three colored vectors lie on a plane:

$$
\begin{gathered}
\left(\mathrm{K}^{\prime-1} \mathbf{x}^{\prime}\right)^{\top}\left(\mathbf{t} \times \mathrm{RK}^{-1} \mathbf{x}\right)=0 \\
\mathbf{x}^{\prime \top} \mathrm{K}^{\prime-\top} \mathbf{t} \times \mathrm{RK}^{-1} \mathbf{x}=0 \\
\mathbf{x}^{\prime \top} \mathrm{K}^{\prime-\top}[\underbrace{[\mathbf{t}]_{\times} \mathrm{RK}^{-1} \mathbf{x}}=0 \\
\mathrm{E}=[\mathbf{t}]_{\times} \mathrm{R}
\end{gathered}
$$

## Essential matrix

- If E is an essential matrix, then its singular values is $[s, s, 0]$
- E is of rank 2 just like $F$
- Given E, we can obtain $\mathbf{t}$ and R as shown below
- The SVD of E is given as

$$
\mathrm{E}=\mathrm{U}\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & 0
\end{array}\right] \mathrm{V}^{\top}
$$

- Suppose the camera matrix of 1st view to be $P=K\left[\begin{array}{ll}I & 0\end{array}\right]$
- Then, 2nd camera matrix should be one of the four matrices:

$$
\begin{aligned}
\mathrm{P}^{\prime} & =\mathrm{K}^{\prime}\left[\begin{array}{ll}
\mathrm{UWV}^{\top} & \mathbf{u}_{3}
\end{array}\right] \\
\mathrm{P}^{\prime} & =\mathrm{K}^{\prime}\left[\begin{array}{ll}
\mathrm{UWV} & \\
\mathrm{P}^{\prime} & -\mathbf{u}_{3}
\end{array}\right]
\end{aligned} \quad \begin{array}{ll}
\mathrm{K}^{\prime}\left[\begin{array}{ll}
\mathrm{UW} \\
\\
& \mathrm{~V}^{\top} \\
\mathbf{u}_{3}
\end{array}\right] & \mathrm{W} \equiv\left[\begin{array}{lll}
1 & -1 & \\
\mathrm{P}^{\prime} & =\mathrm{K}\left[\begin{array}{lll} 
& \mathrm{UW}^{\top} \mathrm{V}^{\top} & -\mathbf{u}_{3}
\end{array}\right] & \\
& & 1
\end{array}\right] \quad \mathbf{u}_{3}=\mathrm{U}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{array}
$$

## Obtaining R and t from E

- Four solutions and relative camera poses
- A single solution is physically possible: 3D points will be in front of both the cameras for only one case ("chirality check")



## Application of epipolar (two-view) geometry

- Finding point correspondences between two images
- Starting from F (seven point matches) or E (five)
- Once epipolar geometry is obtained, you need only to search along the epipolar line for the corresponding point
- Robust correspondence estimation: RANSAC etc.
- Reconstructing 3D structure or camera poses
- Projective reconstruction from F

$$
\mathrm{P}=\left[\begin{array}{ll}
\mathrm{I} & \mathbf{0}
\end{array}\right] \quad \mathrm{P}^{\prime}=\left[\begin{array}{ll}
\mathrm{SF} & \mathrm{e}^{\prime}
\end{array}\right]
$$

- Similarity reconstruction from E



## Summary: matrix decompositions

- SVD; singular value decomposition
- Any $m \times n$ matrix A can be decomposed as $\mathrm{A}=\mathrm{UWV}{ }^{\top}$
- $U$ and $V$ are orthogonal: $U^{\top} U=I \quad V^{\top} V=I$

- $W$ is diagonal whose diagonal entries are called singular values
- Unique if singular values are sorted in descending order
- QR decomposition
- Any $m \times m$ matrix A can be decomposed as $\mathrm{A}=\mathrm{QR}$

- $Q$ is orthogonal ( $Q^{\top} Q=I$ ) and $R$ is an upper-right triangular matrix
- Decomposition is unique
- Cholesky decomposition $\square$
- Any $m \times m$ positive definite symmetric matrix A can be decomposed as $\mathrm{A}=\mathrm{LL}^{\top}$
- $L$ is a lower-left triangular matrix

