## 11. Statistics II

- Covariance
- Correlation
- Covariance matrix/correlation matrix
- Eigenvalues/vectors of covariance matrix


## Reading data from csv files

- Download the file 'cars.csv' from our course page and type as follows to load data
- CSV=Comma Separated Value

```
>> data=csvread('cars.csv');
```

- This file* contains 7 types of numeric data for 406 cars (e.g., MPG(Miles Per Gallon), Horsepower, etc.)
- csvread can only read numeric data correctly
>> data $=$
Columns 1 through $8:$
$0.0000 \mathrm{e}+00$
$0.0000 \mathrm{e}+00$
$0.0000 \mathrm{e}+00$
$0.0000 \mathrm{e}+00$
$0.0000 \mathrm{e}+00$
$0.000 \mathrm{e}+00$
$0.0000 \mathrm{e}+00$
$0.0000 \mathrm{e}+00$
$0.0000 \mathrm{e}+01$
$0.0000 \mathrm{e}+01$
$0.0000 \mathrm{e}+00$
$0.0000 \mathrm{e}+00$
$8.0000 \mathrm{e}+00$
$8.0000 \mathrm{e}+00$
$8.0000 \mathrm{e}+00$
$8.0000 \mathrm{e}+00$
$8.0000 \mathrm{e}+00$
$0.0000 \mathrm{e}+00$
$0.0000 \mathrm{e}+00$
$3.0700 \mathrm{e}+02$
$3.5000 \mathrm{e}+02$
$3.1800 \mathrm{e}+02$
$3.0400 \mathrm{e}+02$
$3.0200 \mathrm{e}+02$
$0.0000 \mathrm{e}+00$
$0.0000 \mathrm{e}+00$
$1.3000 \mathrm{e}+02$
$1.6500 \mathrm{e}+02$
$1.5000 \mathrm{e}+02$
$1.5000 \mathrm{e}+02$
$1.4000 \mathrm{e}+02$

| $0.0000 \mathrm{e}+00$ | $0.0000 \mathrm{e}+00$ | $0.0000 \mathrm{e}+00$ |
| :--- | :--- | :--- |
| $0.0000 \mathrm{e}+00$ | $0.0000 \mathrm{e}+00$ | $0.0000 \mathrm{e}+00$ |
| $3.5040 \mathrm{e}+03$ | $1.2000 \mathrm{e}+01$ | $7.0000 \mathrm{e}+01$ |
| $3.6930 \mathrm{e}+03$ | $1.1500 \mathrm{e}+01$ | $7.0000 \mathrm{e}+01$ |
| $3.4360 \mathrm{e}+03$ | $1.1000 \mathrm{e}+01$ | $7.0000 \mathrm{e}+01$ |
| $3.4330 \mathrm{e}+03$ | $1.2000 \mathrm{e}+01$ | $7.0000 \mathrm{e}+01$ |
| $3.4490 \mathrm{e}+03$ | $1.0500 \mathrm{e}+01$ | $7.0000 \mathrm{e}+01$ |


| Car | MPG | Cylinders | Displacement | Horsepower | Weight | Acceleration | Model | Origin |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STRING | DOUBLE | INT | DOUBLE | DOUBLE | DOUBLE | DOUBLE | INT | CAT |
| Chevrolet Chevelle Malibu | 18 | 8 | 307 | 130 | 3504 | 12 | 70 | US |
| Buick Skylark 320 | 15 | 8 | 350 | 165 | 3693 | 11.5 | 70 | US |
| Plymouth Satellite | 18 | 8 | 318 | 150 | 3436 | 11 | 70 | US |
| AMC Rebel SST | 16 | 8 | 304 | 150 | 3433 | 12 | 70 | US |
| Ford Torino | 17 | 8 | 302 | 140 | 3449 | 10.5 | 70 | US |
| The file copied from https://perso.t | /eagan/class/ | /igr204/datas |  |  | (pounds)(seconds for <br> $0-60 \mathrm{mph}(0-97 \mathrm{~km} / \mathrm{h}))$ |  |  |  |

## Covariance/correlation of two variables

- Covariance = a measure of linear relation between variables, or a linear measure of dependency of two variables
- Correlation = extent to which two variables have a linear relationship with each other
- Draw a scatter plot of the horsepower and weight of each of 406 cars

```
>> plot(data(3:408,5),data(3:408,6),'o')
```



- A linear relationship is observed
- We ignore several invalid points, which are on the ' $x=0$ ' axis


## Covariance of two variables

- Definition (Covariance):

$$
\begin{gathered}
\operatorname{cov}(X, Y)=E[(X-E(X))(Y-E(Y)] \\
\text { or } \quad \operatorname{cov}(\mathbf{x}, \mathbf{y})=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
\end{gathered}
$$

- Properties
negative covariance

(nearly) zero

positive

- If two variables are identical, covariance is merely variance

$$
\operatorname{cov}(X, X)=E\left[(X-E(X))^{2}\right]=\operatorname{var}(X)=\sigma^{2}(X)
$$

## Correlation coefficient (or simply called correlation)

- Definition (also known as Pearson's correlation coefficient):
- Can be thought of as normalized covariance

$$
r(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sigma(X) \sigma(Y)} \quad\left[\begin{array}{l}
\text { standard deviation: } \\
\sigma(X)=\sqrt{\operatorname{var}(X)} \\
\sigma(Y)=\sqrt{\operatorname{var}(Y)}
\end{array}\right]
$$

- corr calculates correlation coefficient

```
>> corr(data(3:408,5),data(3:408,6))
ans = 0.84081
```

- Has a value in the range $[-1,1]$
- Positive and negative; 0 means there is no correlation



## Remarks on correlation

- Correlation does not mean causality
- There can be correlation between two variables even if there is no causal relationship between them
- E.g., Nobel laureates and chocolate consumption
- Dependence is sometimes synonymous with correlation, but it is rigorously defined by probabilistic independence:
- Two events $A$ and $B$ are mutually independent if and only if

$$
\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B) \Leftrightarrow \mathrm{P}(B)=\mathrm{P}(B \mid A)
$$

- Correlation captures only a linear relationship, not a nonlinear one
- All the point data below have zero correlation!



## Covariance matrix/correlation matrix

- There are seven variables in the 'car.csv' data
- We can calculate correlation/covariance between any two (including self) of the seven variables, which creates a $7 \times 7$ matrix, called correlation/covariance matrices
- Suppose a Nx7 matrix storing the data

$$
\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right]^{\top}
$$

- Covariance matrix of the data is defined as

$$
\begin{aligned}
& \qquad \operatorname{cov}(\mathbf{X})=\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathbf{x}_{i}-\mathbf{m}\right)\left(\mathbf{x}_{i}-\mathbf{m}\right)^{\top}=\frac{1}{N-1} \tilde{\mathbf{X}}^{\top} \tilde{\mathbf{X}} \\
& \text { where } \mathrm{m} \text { is the mean vector of } \mathrm{x} \text { and } \tilde{\mathbf{X}}=\left[\mathbf{x}_{1}-\mathbf{m}, \ldots, \mathbf{x}_{N}-\mathbf{m}\right]^{\top}
\end{aligned}
$$

- Correlation matrix can be defined similarly


## Covariance matrix/correlation matrix

- cov and corr gives these matrices from $X$ as below
- Check which pair of variables correlates and to what extent it is

```
>> X=data(3:408,2:8);
>> size(X)
ans =
    4 0 6 7
>> cov(X)
ans =
\begin{tabular}{rrr}
\(7.0590 \mathrm{e}+01\) & \(-1.0581 \mathrm{e}+01\) & \(-6.7374 \mathrm{e}+02\) \\
\(-1.0581 \mathrm{e}+01\) & \(2.9315 \mathrm{e}+00\) & \(1.7098 \mathrm{e}+02\) \\
\(-6.7374 \mathrm{e}+02\) & \(1.7098 \mathrm{e}+02\) & \(1.1009 \mathrm{e}+04\) \\
\(-2.4739 \mathrm{e}+02\) & \(5.7130 \mathrm{e}+01\) & \(3.7148 \mathrm{e}+03\) \\
\(-5.6042 \mathrm{e}+03\) & \(1.2983 \mathrm{e}+03\) & \(8.2869 \mathrm{e}+04\) \\
\(9.9981 \mathrm{e}+00\) & \(-2.5077 \mathrm{e}+00\) & \(-1.6412 \mathrm{e}+02\) \\
\(1.8464 \mathrm{e}+01\) & \(-2.3155 \mathrm{e}+00\) & \(-1.5014 \mathrm{e}+02\)
\end{tabular}
>> corr(X)
ans =
\begin{tabular}{rrrr}
1.00000 & -0.73556 & -0.76428 & -0.72667 \\
-0.73556 & 1.00000 & 0.95179 & 0.82347 \\
-0.76428 & 0.95179 & 1.00000 & 0.87376 \\
-0.72667 & 0.82347 & 0.87376 & 1.00000 \\
-0.78751 & 0.89522 & 0.93247 & 0.84081 \\
0.42449 & -0.52245 & -0.55798 & -0.68205 \\
0.58623 & -0.36076 & -0.38171 & -0.41993
\end{tabular}

\section*{Eigenvalues/vectors of a covariance matrix}
- Covariance matrices explain how data points distribute in the data space
- Eigenvectors of a covariance matrix explain in which directions data points spread in the space
- The eigenvalue associated with each eigenvector indicates the width of the spread in that direction
```

>> load('3d_ptdata')
>> size(X)
ans =
10000
3
>> plot3(X(:,1),X(:,2),X(:,3),'.'); axis equal
>> [V,W]=eig(\operatorname{cov}(X))
v =

| 0.867213 |
| :--- | ---: | ---: |
| 0.496518 |
| 0.037571 |$|$| -0.208827 |  |  |
| ---: | ---: | ---: |
| 0.431157 |  |  |
| -0.877778 | -0.452032 | Three orthogonal axes |

E =
Diagonal Matrix

| 0.98420 | 0 | 0 | Spread widhts (variances) |
| :---: | :---: | :---: | :---: |
| 0 | 9.05693 | 0 |  |
| 0 | 0 | 103.15470 |  |

```

\section*{Exercises 11.1}
- The last method of analyzing data based on eigenvalue/vectors of covariance matrices can be applied to any type of data; let's consider a set of images here
- First, download a set of face images from URL below and expand them in directory 'att_faces' in your working directory
- http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
- Second, copy the script ‘load_faces.m' in ‘e11files.zip' downloaded from the course page
- Using this script, load 400 face images ( \(92 \times 112\) pixels) to X , a \(400 \times 10304_{(=92 \times 112)}\) matrix, by typing
```

>> load_faces

```
- You can display, say, the \(100^{\text {th }}\) image, by typing
>> imshow(reshape \((\mathrm{X}(100,:),[112,92]) / 255 \%\) '/255' may not be necessary

\section*{Exercises 11.1}
- Calculate the first 20 eigenvalues of the covariance matrix of \(X\) and plot them
- Remark: In this example, each data point is a single image; it resides in \(92 \times 112=10304\)-dimensional space; there are 400 data points (=face images); thus, \(\operatorname{cov}(\mathrm{X})\) is a \(10304 \times 10304\) matrix and its computation is very, very time-consuming (don't do this)
- Hint: Recall the relation between SVD and the eigenvalue problem; use SVD instead of eig \((\operatorname{cov}(\mathrm{X}))\); to be specific, type below
svds calculates a specified
```

>> [U,W,V]=svds(X-ones(400,1)*mean(X),20);

```
```

>> [U,W,V]=svds(X-ones(400,1)*mean(X),20);

```
number of largest singular
values and related vectors
- See that the first few singular values (square root of eigenvalues) are very large and the subsequent singular values are very small
- Remark: This means that the data reside only in a low-dimensional subspace in the 10304-dim data space
- Calculate also the eigenvectors and then display them as images of \(92 \times 112\) pixels
- Hint: Eigenvectors have negative elements in general and thus some normalization of brightness necessary; you can display the first eigenvector as a \(92 \times 112\) image by
```

>> svec=V(:,1);
>> imshow(reshape(svec,[112,92]),[min(svec),max(svec)])

```
```

