10. Matrices and linear algebra II

- Eigenvectors and eigenvalues
- Singular value decomposition
- Rank of a matrix
- Low-rank approximation of matrices

Eigenvalues and eigenvectors

- [$\mathrm{V}, \mathrm{D}]=\mathrm{eig}(\mathrm{A})$: calculates eigenvectors and eigenvalues of a square matrix
- Eigenvectors are stored in ascending order in a diagonal matrix

$$
\mathbf{A} \mathbf{v}_{i}=d_{i} \mathbf{v}_{i} \quad \Longleftrightarrow \mathbf{A V}=\mathbf{V} \mathbf{D}
$$

eigenvector eigenvalue

$$
\mathbf{V}=\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right] \quad \mathbf{D}=\left[\begin{array}{llll}
d_{1} & & & \\
& d_{2} & & \\
& & \ddots & \\
& & & d_{n}
\end{array}\right]
$$

```
>> A=randn(3,3);
>> [V,D]=eig(A)
v =
    0.52988 + 0.00000i -0.05375-0.34548i -0.05375 + 0.34548i
    0.68932 + 0.00000i 0.84473 + 0.00000i 0.84473-0.00000i
    0.49404 + 0.00000i 0.12431 + 0.38565i 0.12431-0.38565i
D =
Diagonal Matrix
    0.04533+0.00000i 
>> A*V-V*D
ans =
    1.6306e-16 + 0.0000e+00i -1.1102e-15 - 2.2204e-15i -1.1102e-15 + 2.2204e-15i
    -1.5959e-16 + 0.0000e+00i 0.0000e+00 + 4.4409e-16i 0.0000e+00 - 4.4409e-16i
    -2.6368e-16 + 0.0000e+00i -1.1102e-16 + 3.3307e-16i -1.1102e-16 - 3.3307e-16i
```


Eigenvectors/values of symmetric matrices

- Symmetric matrices always have real eigenvectors/values
- Nonsymmetric matrices have complex eigenvectors/values in general as in the last slide
- Many matrices we encounter in engineering will be symmetric
- Remark: their eigenvectors are always orthogonal, i.e., $\mathbf{V}^{\top} \mathbf{V}=\mathbf{V V}^{\top}=\mathbf{I}$
- The symmetric matrix is 'diagonalized' by V as $\mathbf{V}^{\top} \mathbf{A V}=\mathbf{D}$

```
>> X = randn(3,3);
>> A=X`*X;
>> [V,D]=eig(A)
V =
    0.960179 0.267639 0.080159
    -0.226697 0.914040 -0.336363
    -0.163292 0.304796 0.938315
D =
Diagonal Matrix
    0.015584 rrre
    0
```

```
>> A*V-V*D
ans =
    1.2143e-17 -2.7756e-16 3.3307e-16
    9.1507e-17 0.0000e+00 -4.4409e-16
    -1.5179e-16 0.0000e+00 0.0000e+00
>> V'*A*V
ans =
    1.5584e-02 4.2718e-17 -1.7391e-16
    -1.3878e-17 1.7526e+00 2.2204e-16
    -2.2204e-16 4.4409e-16 6.2549e+00
```


Singular value decomposition of matrices (1/2)

- Any $m \times n$ real matrix can be decomposed into a product of orthogonal matrices U and V and a diagonal matrix W as follows:

$$
\begin{aligned}
& \mathbf{X}=\mathbf{U W} \mathbf{V}^{\top} \\
& \mathbf{U}^{\top} \mathbf{U}=\mathbf{I} \quad \mathbf{V}^{\top} \mathbf{V}=\mathbf{V} \mathbf{V}^{\top}=\mathbf{I}
\end{aligned}
$$

- Remark: The decomposition is unique when we fix the order of the singular values (say, in descending order)

Singular value decomposition of matrices (2/2)

- svd: calculates singular value decomposition
- Singular value decomposition is often abbreviated as SVD

```
>> X=randn(5,3);
>> [U,W,V]=svd(X,0);
>> W
W =
Diagonal Matrix
\begin{tabular}{rrr}
3.07321 & 0 & 0 \\
0 & 1.73673 & 0 \\
0 & 0 & 0.82822
\end{tabular}
```



```
>> norm(U*W*V'-X)
ans = 1.5822e-15
>> norm(U'*U-eye(3))
ans = 6.7963e-16
>> norm(V'*V-eye(3))
ans = 2.3629e-16
```


Relation between SVD and eigenproblem

- Column vectors of V of SVD of X coincides with eigenvecotrs of $A=X^{\prime} X$

$$
\begin{aligned}
\mathbf{A} & =\mathbf{X}^{\top} \mathbf{X} \\
& =\left(\mathbf{U} \mathbf{W} \mathbf{V}^{\top}\right)^{\top}\left(\mathbf{U} \mathbf{W} \mathbf{V}^{\top}\right) \\
& =\mathbf{V} \mathbf{W}^{\top} \mathbf{U}^{\top} \mathbf{U W} \mathbf{V}^{\top} \\
& =\mathbf{V} \mathbf{W}^{2} \mathbf{V}^{\top}
\end{aligned}
$$

```
>> X=randn(10,3);
>> [V1,D]=eig(X'*X);
>> [U,W,V2]=svd(X,0)
>> V1
V1 =
\begin{tabular}{|c|c|c|}
\hline -0.69324 & -0.61974 & -0.36789 \\
\hline 0.14611 & 0.37901 & -0.91379 \\
\hline 0.70574 & -0.68722 & -0.17219 \\
\hline
\end{tabular}
>> V2
V2 =
\(\left.\left.\begin{array}{l|l|}\hline 0.36789 \\
0.91379 \\
0.17219\end{array}\right] \begin{array}{r}0.61974 \\
-0.37901 \\
0.68722\end{array}\right]\)\begin{tabular}{r}
0.69324 \\
-0.14611 \\
-0.70574
\end{tabular}
```

- Singular values of X are equal to the square roots of eigenvalues of $A=X^{\prime} X$

```
>> sqrt(D)
ans =
Diagonal Matrix
    $1.9851}n\mp@code{0}
```

```
>> W
W =
Diaqonal Matrix
\begin{tabular}{|c|c|c|}
\hline 4.7675 & 0 & 0 \\
\hline 0 & 3.9417 & 0 \\
\hline 0 & 0 & 1.9851 \\
\hline 0 & 0 & 0 \\
\hline
\end{tabular}
```


Properties of SVD

- Pseudo inverse of X can be written using its SVD as

$$
\begin{gathered}
\mathbf{X}=\mathbf{U} \mathbf{W} \mathbf{V}^{\top} \\
\downarrow \\
\mathbf{X}^{\dagger}=\mathbf{V} \mathbf{W}^{-1} \mathbf{U}^{\top}
\end{gathered}
$$

- The number of non-zero singular values of X is called the rank of X

```
>> X=randn(5,3);
>> pinv(X)
ans =
\begin{tabular}{rrrrr}
0.037163 & -0.070115 & -0.329386 & 0.373801 & -0.323277 \\
-0.116157 & -0.215984 & -0.339899 & -0.014697 & -0.207555 \\
-0.066574 & -0.156025 & 0.513828 & 0.023533 & -0.501137
\end{tabular}
>> [U,W,V]=svd(X,O);
>> V*inv(W)*U'
ans =
\begin{tabular}{rrrrr}
0.037163 & -0.070115 & -0.329386 & 0.373801 & -0.323277 \\
-0.116157 & -0.215984 & -0.339899 & -0.014697 & -0.207555 \\
-0.066574 & -0.156025 & 0.513828 & 0.023533 & -0.501137
\end{tabular}
```

```
>> X=randn(5,2)*randn(2,4)
X =
    -0.065735 -0.053739 1.626185 1.734253
    -0.022809 -0.020869 0.637444 0.672717
        0.151451 0.140834 -4.307108 -4.539055
        0.563733 0.153728 -3.832887 -5.067102
    -0.246376 -0.082560 2.181361 2.705379
>> rank(X)
ans = 2
>> svd(X)
ans =
    9.9100e+00
    6.0159e-01
    2.4902e-16
    1.6489e-17
```


Approximation of matrices by SVD

- Consider the following problem: given a matrix A, we wish to obtain a matrix of a fixed rank r that approximates A as accurately as possible
- It can be formulated as a constrained minimization problem:

$$
\min _{\hat{\mathbf{A}}}\|\mathbf{A}-\hat{\mathbf{A}}\|_{F} \quad \text { subject to } \quad \operatorname{rank}(\mathbf{A})=r
$$

- Its solution is simply given by SVD of A in the following way:
$\mathbf{A}=\mathbf{U W} \mathbf{V}^{\top}$

$$
\begin{aligned}
\mathbf{U} & =\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}, \ldots, \mathbf{u}_{n}\right] \\
\mathbf{W} & =\operatorname{diag}\left[w_{1}, \ldots, w_{r}, \ldots, w_{n}\right] \\
\mathbf{V} & =\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}, \ldots, \mathbf{v}_{n}\right]
\end{aligned}
$$

$$
\hat{\mathbf{A}}=\mathbf{U}_{r} \mathbf{W}_{r} \mathbf{V}_{r}^{\top}
$$

$$
\mathbf{U}_{r}=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right]
$$

Simply remove $(r+1)^{\text {th }}$ to $n^{\text {th }}$ column vectors

$$
\mathbf{W}_{r}=\operatorname{diag}\left[w_{1}, \ldots, w_{r}\right]
$$

$$
\mathbf{V}_{r}=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right]
$$

Exercise 10.1

- We wish to predict how a person rates songs

Customers who bought this item also bought

- Some people have similar tastes about like/dislike of music
- That said, there will be no two persons having exactly the same taste
- This kind of problems is known as collaborative filtering
- We approximate the rating matrix by a matrix of rank=3

Exercise 10.1

- Ratings of 20 songs by 15 persons are available
- Download rating.txt from the course page and read into R by

```
>> load('rating.txt')
```

- Rating is represented by an integer in the range of $[1,5]$
- $\mathrm{R}(2,4)=3$ means person2 gave rating=3 for song4
- Suppose a new (i.e., $16^{\text {th }}$) person gives ratings for three songs
- song1=4, song3=2, song7=3, i.e., $R_{16,1}=4, R_{16,3}=2, R_{16,7}=3$
- Estimate ratings by this person for other songs
- First, find a rank-3 approximation of R, i.e., obtain 15×3 P and $3 \times 20 \mathrm{~S}$
- Second, find p_{16} that satisfies the following equations using S :

$$
\begin{aligned}
& R_{16,1}=\mathbf{p}_{16}^{\top} \mathbf{s}_{1} \\
& R_{16,3}=\mathbf{p}_{16}^{\top} \mathbf{s}_{3} \\
& R_{16,7}=\mathbf{p}_{16}^{\top} \mathbf{s}_{7}
\end{aligned}
$$

- Finally, calculate prediction of ratings by $R_{16, j}=\mathbf{p}_{16}^{\top} \mathbf{s}_{j}$
- True ratings are:

$$
\begin{array}{lllllllllllllllllllll}
4 & 3 & 2 & 2 & 3 & 3 & 3 & 2 & 3 & 1 & 2 & 3 & 2 & 2 & 3 & 4 & 3 & 3 & 3 & 3
\end{array}
$$

