10. Matrices and linear algebra II

- Eigenvectors and eigenvalues
- Singular value decomposition
- Rank of a matrix
- Low-rank approximation of matrices

Eigenvalues and eigenvectors

- [V,D]=eig(A): calculates eigenvectors and eigenvalues of a square matrix
 - Eigenvectors are stored in ascending order in a diagonal matrix

$$\mathbf{A}\mathbf{v}_i = d_i\mathbf{v}_i$$
 $\mathbf{A}\mathbf{V} = \mathbf{V}\mathbf{D}$ eigenvector eigenvalue $\mathbf{V} = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n]$ $\mathbf{D} = \begin{bmatrix} d_1 & & & \\ & d_2 & & \\ & & \ddots & \\ & & & d_n \end{bmatrix}$

```
>> A=randn(3,3);
>> [V,D]=eig(A)
V =
  0.52988 + 0.00000i -0.05375 - 0.34548i -0.05375 + 0.34548i
  0.49404 + 0.00000i 0.12431 + 0.38565i 0.12431 - 0.38565i
D =
Diagonal Matrix
  0.04533 + 0.00000i
                    2.09047 + 1.25277i
                                   0 2.09047 - 1.25277i
>> A*V-V*D
ans =
  1.6306e-16 + 0.0000e+00i -1.1102e-15 - 2.2204e-15i -1.1102e-15 + 2.2204e-15i
 -1.5959e-16 + 0.0000e+00i 0.0000e+00 + 4.4409e-16i 0.0000e+00 - 4.4409e-16i
 -2.6368e-16 + 0.0000e+00i -1.1102e-16 + 3.3307e-16i -1.1102e-16 - 3.3307e-16i
```

Eigenvectors/values of symmetric matrices

- Symmetric matrices always have *real* eigenvectors/values
 - Nonsymmetric matrices have complex eigenvectors/values in general as in the last slide
 - Many matrices we encounter in engineering will be symmetric
 - Remark: their eigenvectors are always orthogonal, i.e., $\mathbf{V}^{\top}\mathbf{V} = \mathbf{V}\mathbf{V}^{\top} = \mathbf{I}$
 - The symmetric matrix is 'diagonalized' by V as $\mathbf{V}^{\top} \mathbf{A} \mathbf{V} = \mathbf{D}$

```
>> X = randn(3,3);
>> A=X'*X;
>> [V,D]=eig(A)
V =
   0.960179
            0.267639
                         0.080159
  -0.226697 0.914040 -0.336363
  -0.163292
             0.304796
                         0.938315
D =
Diagonal Matrix
   0.015584
              1.752624
                         6.254892
          0
```

```
>> A*V-V*D
ans =
  1.2143e-17 -2.7756e-16
                            3.3307e-16
  9.1507e-17
               0.0000e+00
                           -4.4409e-16
               0.0000e+00
  -1.5179e-16
                            0.0000e+00
>> V'*A*V
ans =
               4.2718e-17 -1.7391e-16
  1.5584e-02
 -1.3878e-17
               1.7526e+00
                            2,2204e-16
  -2.2204e-16
               4.4409e-16
                            6.2549e+00
```

Singular value decomposition of matrices (1/2)

 Any m×n real matrix can be decomposed into a product of orthogonal matrices U and V and a diagonal matrix W as follows:

 Remark: The decomposition is unique when we fix the order of the singular values (say, in descending order)

Singular value decomposition of matrices (2/2)

- svd: calculates singular value decomposition
 - Singular value decomposition is often abbreviated as SVD

```
\mathbf{X} = \mathbf{U}\mathbf{W}\mathbf{V}^{\top}
```

```
>> norm(U*W*V'-X)
ans = 1.5822e-15
>> norm(U'*U-eye(3))
ans = 6.7963e-16
>> norm(V'*V-eye(3))
ans = 2.3629e-16
```

Relation between SVD and eigenproblem

 Column vectors of V of SVD of X coincides with eigenvecotrs of A=X'X

$$\mathbf{A} = \mathbf{X}^{\top} \mathbf{X}$$

$$= (\mathbf{U} \mathbf{W} \mathbf{V}^{\top})^{\top} (\mathbf{U} \mathbf{W} \mathbf{V}^{\top})$$

$$= \mathbf{V} \mathbf{W}^{\top} \mathbf{U}^{\top} \mathbf{U} \mathbf{W} \mathbf{V}^{\top}$$

$$= \mathbf{V} \mathbf{W}^{2} \mathbf{V}^{\top}$$

 Singular values of X are equal to the square roots of eigenvalues of A=X'X

```
>> X=randn(10,3);
>> [V1,D]=eig(X'*X);
>> [U,W,V2]=svd(X,0)
>> V1
V1 =
            -0.61974
  -0.69324
                       -0.36789
             0.37901
                       -0.91379
   0.14611
   0.70574
            -0.68722
                       -0.17219
>> V2
V2 =
              0.61974
                        0.69324
   0.36789
   0.91379
             -0.37901
                       -0.14611
                       -0.70574
   0.17219
              0.68722
```

Properties of SVD

 Pseudo inverse of X can be written using its SVD as

$$\mathbf{X} = \mathbf{U}\mathbf{W}\mathbf{V}^{\top}$$

$$\downarrow$$

$$\mathbf{X}^{\dagger} = \mathbf{V}\mathbf{W}^{-1}\mathbf{U}^{\top}$$

 The number of non-zero singular values of X is called the rank of X

```
>> X=randn(5,3);
>> pinv(X)
ans =
  0.037163 -0.070115 -0.329386
                                 0.373801 - 0.323277
 -0.116157 -0.215984 -0.339899 -0.014697 -0.207555
  -0.066574 -0.156025 0.513828
                                 0.023533 - 0.501137
>> [U,W,V]=svd(X,0);
>> V*inv(W)*U'
ans =
  0.037163 - 0.070115 - 0.329386
                                 0.373801 - 0.323277
  -0.116157 -0.215984 -0.339899 -0.014697
                                           -0.207555
  -0.066574 -0.156025 0.513828
                                 0.023533 -0.501137
```

```
>> X=randn(5,2)*randn(2,4)
X =
 -0.065735 -0.053739 1.626185
                             1.734253
 -0.022809 -0.020869 0.637444
                             0.672717
  0.151451 0.140834 -4.307108 -4.539055
  -0.246376 -0.082560 2.181361
                             2.705379
>> rank(X)
ans = 2
>> svd(X)
ans =
  9.9100e+00
  6.0159e-01
  2.4902e-16
  1.6489e-17
```

Approximation of matrices by SVD

- Consider the following problem: given a matrix A, we wish to obtain a matrix of a fixed rank r that approximates A as accurately as possible
- It can be formulated as a constrained minimization problem:

$$\min_{\hat{\mathbf{A}}} \|\mathbf{A} - \hat{\mathbf{A}}\|_F \quad \text{subject to} \quad \text{rank}(\mathbf{A}) = r$$

Its solution is simply given by SVD of A in the following way:

$$\mathbf{A} = \mathbf{U} \mathbf{W} \mathbf{V}^{ op}$$
 $\hat{\mathbf{A}} = \mathbf{U}_r \mathbf{W}_r \mathbf{V}_r^{ op}$ $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_r, \dots, \mathbf{u}_n]$ $\mathbf{W} = \mathrm{diag}[w_1, \dots, w_r, \dots, w_n]$ Simply remove $(r+1)^{\mathrm{th}}$ to n^{th} $\mathbf{V}_r = [\mathbf{u}_1, \dots, \mathbf{u}_r]$ $\mathbf{V}_r = [\mathbf{v}_1, \dots, \mathbf{v}_r]$

Exercise 10.1

We wish to predict how a person rates songs

£13 48 Drim

Some people have similar tastes about like/dislike of music

£13 48 Drime

£13.00 Prime

- That said, there will be no two persons having exactly the same taste
- This kind of problems is known as collaborative filtering
- We approximate the rating matrix by a matrix of rank=3

Exercise 10.1

- Ratings of 20 songs by 15 persons are available
 - Download rating.txt from the course page and read into R by

```
>> load('rating.txt')
```

- Rating is represented by an integer in the range of [1,5]
- R(2,4)=3 means person2 gave rating=3 for song4
- Suppose a new (i.e., 16th) person gives ratings for three songs
 - song1=4, song3=2, song7=3, i.e., $R_{16,1}=4,\ R_{16,3}=2,\ R_{16,7}=3$
- Estimate ratings by this person for other songs
 - First, find a rank-3 approximation of R, i.e., obtain 15x3 P and 3x20 S
 - Second, find p₁₆ that satisfies the following equations using S:

$$R_{16,1} = \mathbf{p}_{16}^{\top} \mathbf{s}_1$$

$$R_{16,3} = \mathbf{p}_{16}^{\top} \mathbf{s}_3$$

$$R_{16,7} = \mathbf{p}_{16}^{\top} \mathbf{s}_7$$

- Finally, calculate prediction of ratings by $R_{16,j} = \mathbf{p}_{16}^{\top} \mathbf{s}_j$
- True ratings are:

4 3 2 2 3 3 3 2 3 1 2 3 2 2 3 4 3 3 3