
7. Signal processing
• Using audio data
• Fourier transform
• Noise reduction

1

Using audio data
• audioread reads audio signals recorded in a file
• sound plays audio signals

2※ An example of a voice signal

>> [f,freq]=audioread(‘test.wav‘);
>> size(f)
ans =

932591 2
>> freq
freq = 44100
>> x1=length(f)/freq
ans = 21.147
>> x=linspace(0,x1,length(f));
>> plot(x,f);
>> sound(f,freq);
>> sound(f,0.7*freq);

930 thousand sample points in 2 (left & right) channels

sampling rate = 44100Hz (i.e., 44.1 thousand points per sec.)

length of the audio signal is about 21 sec.

play the audio signal
play at a different rate

Fourier transform (1/2)
• Fourier series expansion: A periodic signal can be represented as a

linear weighted sum of sinusoidal waves of different frequencies

• Each weight in the linear sum is regarded as the component of the
frequency associated with the weight in the original signal

3https://commons.wikimedia.org/wiki/File:Fourier_transform_time_and_frequency_domains_(small).gif

f(x) =

f

x

• A (periodic) signal can be represented by frequency components
• Generalizing this idea, Fourier transform represents a signal as

distribution of frequency components

• The representation f(ξ) in the frequency domain can be transformed
back to that f(x) in the temporal domain

Fourier transform (2/2)

4

^

f(x) f̂(⇠)

Time domain Frequency domain

f(x) =

Z 1

�1
f̂(⇠)e2⇡ix⇠d⇠

Computing frequency components
• fft performs Fourier transform (algorithm: fast Fourier

transform) for an input signal

5

>> F=fft(f(:,1));
>> fs=size(F)
ans =

932591
>> F(50000)
ans = 92.2299 + 1.2605i
>> df=freq/length(F);
>> xi=-freq/2:df:freq/2-df;
>> plot(xi,abs(F))

>> Fshift=fftshift(F);
>> plot(xi,abs(Fshift))

※ freq/2 in the specified range
reflects the fact that frequency
components higher than ½ of
the sampling frequency
(known as Nyquist frequency)
cannot be correctly sampled;

※ F is a vector, in which the zero-
frequency component is at the
both ends, not at the center;
fftshift shift F so that the
zero-freq. component is at the
center

Noise reduction (1/2)

6

>> f2=f+0.5*randn(size(f));
>> sound(f2,freq);
>> plot(x,f2);

>> F2shift=fftshift(fft(f2));
>> plot(xi,abs(F2shift(:,1)))

• Letʼs adding noises to a signal intentionally

• When seeing the signal in the frequency domain

Noise reduction (2/2)
• Letʼs remove high-frequency components and perform inverse Fourier

transform
• Creating a filter eliminating frequency components lower than 3kHz

• Element-wise multiplication between the signal and the filter, followed by
application of inverse shift (ifftshift) and inverse transform (ifft)

7

>> filter=abs(xi) < 3000;

>> f2filtered = ifft(ifftshift(F2shift.*filter’));
>> plot(xi,abs(F2shift.*filter’)(:,1))
>> sound(f2filtered,freq)

0

1

✕ =

-3000 3000

※ See how results will change if
you change the value of 3kHz

Exercise 7.1
1. Create digital data of sinusoidal waves of different frequencies,

play them as audio signals, and plot them in the time and
frequency domain

2. Add one of the created sinusoidal waves to the voice signal
(test.wav) and plot the resulting signal in the time and
frequency domain

3. Consider a method for eliminating the added sinusoidal wave
from the signal of Q2 as much as possible, and show the result
by plots of the signals in the time and frequency domain

8

