1. Projective geometry

- Homogeneous representation of points and lines in 2D space
- 2D projective space
- Points at infinity and the line at infinity
- Conics and dual conics
- Projective transformation
- Hierarchy of 2D projective transformation

Notation

- Scalars: x, y, \ldots
- Vectors: $\mathbf{x}, \mathbf{y}, \ldots$
- Transpose: $\mathbf{x}^{\top}, \mathbf{y}^{\top}, \ldots$
- Matrices: A, B, P, ...
- Transpose: $\mathrm{A}^{\top}, \mathrm{B}^{\top}, \mathrm{P}^{\top}, \ldots$

Homogeneous representation of lines in 2D space

- A line on a xy plane: $a x+b y+c=0$
- Any line can be represented by a 3-vector $\mathbf{l}=[a, b, c]^{\top}$
- The same line is given by $k(a, b, c)^{\top}=(k a, k b, k c)^{\top}$

$$
k a x+k b y+k c=k(a x+b y+c)=0
$$

- In this sense, $(a, b, c)^{\top}$ is equivalent to $k(a, b, c)^{\top}$
- Such vectors are called homogeneous vectors
- This equivalence will be represented by \propto
- Two vectors on both sides are parallel

$$
(a, b, c)^{\top} \propto k(a, b, c)^{\top}
$$

Homogeneous representation of points in 2D space

- A point (x, y) is on a line $\mathbf{l}=(a, b, c)^{\top}$

$$
\Leftrightarrow \quad \mathbf{l}^{\top} \mathbf{x}=\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=a x+b y+c=0
$$

- Homogeneous representation of a point: $\mathbf{x}=(x, y, 1)^{\top}$
- The same point is given by: $k(x, y, 1)^{\top}=(k x, k y, k)^{\top}$

$$
(x, y, 1)^{\top} \propto k(x, y, 1)^{\top}
$$

- To recover the original (inhomogeneous) coordinates from homogeneous coordinates, simply do

$$
\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)^{\top} \quad \triangleleft \quad\left(\frac{x_{1}}{x_{3}}, \frac{x_{2}}{x_{3}}\right)
$$

2D projective space

- Sets of equivalent vectors in this sense form a special space called the projective space

3D Euclidean space

2D projective space

Intersection of lines

- Q) What is the crossing point of lines? $\quad \mathbf{l}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \quad \mathbf{1}^{\prime}=\left[\begin{array}{l}a^{\prime} \\ b^{\prime} \\ c^{\prime}\end{array}\right]$
- A) It is given by their cross product:

$$
\mathbf{x} \equiv \mathrm{l} \times \mathbf{1}^{\prime} \quad \mathrm{l} \times \mathrm{l}^{\prime}
$$

- Proof: $\mathbf{l}^{\top} \mathbf{x}=\mathbf{l}^{\top}\left(\mathbf{l} \times \mathbf{l}^{\prime}\right)=0$ (Scalar triple product)
- E.g. Crossing point of $x=1$ and $y=1$?

\[

\]

Points at infinity

- Consider the intersection of $\mathbf{l}=(a, b, c)^{\top}$ and $\mathbf{1}^{\prime}=\left(a, b, c^{\prime}\right)^{\top}$

$$
\mathbf{l} \times \mathbf{1}^{\prime}=\left(b c^{\prime}-b c, c a-a c^{\prime}, a b-a b\right)^{\top}=\left(c^{\prime}-c\right)(b,-a, 0)^{\top}
$$

- Conversion to inhomogeneous coordinates...

$$
(b / 0,-a / 0)=(\infty, \infty)
$$

- A point with homogeneous coordinates $(x, y, 0)^{\top}$ is called "a point at infinity"
- A point $\left(x_{1}, x_{2}, x_{3}\right)^{\top}$ gives a finite point if $x_{3} \neq 0$ and gives a point at infinity if $x_{3}=0$

Points at infinity

- In inhomogeneous domain, parallel lines do not have an intersection
- In homogenous domain, parallel lines have an intersection at a point at infinity
- Points at infinity and finite points can be treated equally \leftarrow an advantage of using homogeneous representation
- Note that there are an infinite number of 'points at infinity'

$$
(a, b, 0)^{\top}
$$

The line at infinity

- The special line $\mathbf{l}=(0,0,1)^{\top}$ is called "the line at infinity"
- The name comes from the fact that every point at infinity will lie on this line

$$
\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
0
\end{array}\right]=0
$$

- This line is unique, and will be denoted by

$$
\mathbf{l}_{\infty}=(0,0,1)^{\top}
$$

Duality of points and lines

- There is symmetry between points and lines

$$
\mathbf{l}^{\top} \mathbf{x}=\mathbf{x}^{\top} \mathbf{l}=0
$$

- Exchange of points and lines in a proposition won't change its correctness
- E.g. Intersection of lines is given by

$$
\mathrm{x}=\mathrm{l} \times \mathrm{l}^{\prime}
$$

\Leftrightarrow A line passing through two points is given by

$$
\mathrm{l}=\mathrm{x} \times \mathrm{x}^{\prime}
$$

- Prove this directly without using the duality (1st assignment)

Conics

- A conic $=$ a curve obtained as the intersection of a cone with a plane

Ellipse

Hyperbola

Parabola

Any conic on a xy plane is given by

$$
\begin{gathered}
a x^{2}+b x y+c y^{2}+d x+e y+f=0 \\
\forall \quad x \leftarrow x_{1} / x_{3} \text { and } y \leftarrow x_{2} / x_{3} \\
a x_{1}^{2}+b x_{1} x_{2}+c x_{2}^{2}+d x_{1} x_{3}+e x_{2} x_{3}+f x_{3}^{2}=0
\end{gathered}
$$

Conics

- Or, can also be written as $\mathbf{x}^{\top} \mathbf{C x}=0$

$$
\mathbf{C}=\left[\begin{array}{ccc}
a & b / 2 & d / 2 \\
b / 2 & c & e / 2 \\
d / 2 & e / 2 & f
\end{array}\right]
$$

- Any 3×3 symmetric matrix represents a conic
- Matrices scaled by constants give the same conic
- Specifying five points determines a conic (passing these points)

Tangents to a conic

- The line \mathbf{l} tangent to a conic C at a point \mathbf{x} is given by

$$
\mathrm{l}=\mathrm{Cx}
$$

Proof: \mathbf{x} lies on \mathbf{l}, since $\mathbf{x}^{\top} \mathbf{l}=\mathbf{x}^{\top} \mathbf{C} \mathbf{x}=0$
Assume that there exists another point y lying on C and 1 .

Then, for any α, it should hold that

$$
(\mathbf{x}+\alpha \mathbf{y})^{\top} \mathrm{C}(\mathbf{x}+\alpha \mathbf{y})=0
$$

This means that any point $\mathbf{x}+\alpha \mathbf{y}$ should lie on \mathbf{C}.
This is possible only if C is a line or there exists no such point \mathbf{y}.

Dual conics

- A conic C gives a set of points. A dual conic C^{*} is another type of conics, which gives a set of lines
- Also known as line conics
- Consider $\mathbf{l}^{\top} \mathrm{C}^{*} \mathbf{l}=0$, where $\mathrm{C}^{*} \equiv \mathrm{C}^{-1}$
- This gives a set of tangent lines to conic C ---- (*)

Show the above $\left(^{*}\right)$ is true ($2^{\text {nd }}$ assignment).

2D projective transformation

- Projective transformation (different names: projectivity, homography, colineation)
- Definition: An invertible mapping from/to 2D projective spaces that satisfies that if three points lie on a line, then the mapped points lie on a line.
- Intuitively, any mapping from a plane to a plane that maps a line to a line
- Such a transformation ($\mathrm{x} \rightarrow \mathrm{x}^{\prime}$) is given by the following equation:

$$
\mathbf{x}^{\prime} \propto \mathbf{H} \mathbf{x} \quad \text { or } \quad \mathbf{x}^{\prime} \propto\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right] \mathbf{x}
$$

An example: central projection

- Central projection: a point on a plane is mapped onto a point on another plane as shown below

- Obviously, central projection maps a line to a line, and thus it is a 2d projective transformation

Calculating a projective transformation

- If you want to represent the points before/after the mapping in inhomogeneous coordinates...

$$
\begin{gathered}
\mathbf{x}^{\prime} \propto\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right] \mathbf{x} \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right] \propto\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{l}
h_{11} x+h_{12} y+h_{13} \\
h_{21} x+h_{22} y+h_{23} \\
h_{31} x+h_{32} y+h_{33}
\end{array}\right]} \\
x^{\prime}=\frac{h_{11} x+h_{12} y+h_{13}}{h_{31} x+h_{32} y+h_{33}} \\
y^{\prime}=\frac{h_{21} x+h_{22} y+h_{23}}{h_{31} x+h_{32} y+h_{33}}
\end{gathered}
$$

Transformation of lines and conics

- A 2D projective transformation mapping a point as

$$
\mathbf{x}^{\prime} \propto H \mathbf{x}
$$

- maps a line as

$$
\mathbf{l}^{\prime} \propto \mathrm{H}^{-\top} \mathbf{l}
$$

- proof:

$$
\mathbf{x}^{\prime \top} \mathbf{l}^{\prime}=\left(\mathbf{x}^{\top} \mathrm{H}^{\top}\right) \mathbf{l}^{\prime}=\left(\mathbf{x}^{\top} \mathbf{H}^{\top}\right)\left(\mathrm{H}^{-\top} \mathbf{l}\right)=\mathbf{x}^{\top} \mathbf{l}=0
$$

- and maps a conic as

$$
\mathrm{C}^{\prime} \propto \mathrm{H}^{-\top} \mathrm{CH}^{-1}
$$

- proof:

$$
\mathbf{x}^{\prime \top} \mathrm{C}^{\prime} \mathbf{x}^{\prime}=\mathbf{x}^{\top} \mathrm{H}^{\top} \mathrm{C}^{\prime} \mathrm{H} \mathbf{x}=\mathbf{x}^{\top} \mathrm{H}^{\top} \mathrm{H}^{-\top} \mathrm{CH}^{-1} \mathrm{Hx}=\mathbf{x}^{\top} \mathbf{C x}=0
$$

Transformation of lines and conics

Hierarchy of 2D projective transformation

- Projective transformation can be classified into the following four types in the order of increasing degrees of freedom:

1. Euclidean transformation / Isometry
2. Similarity transformation
3. Affine transformation
4. Projective transformation (full-projective ---)

$$
\mathbf{x}^{\prime} \propto\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right] \mathbf{x}
$$

Euclidean transformation

- 2D projective transformations given as follows:

$$
\mathbf{x}^{\prime} \propto\left[\begin{array}{ccc}
\varepsilon \cos \theta & -\sin \theta & t_{x} \\
\varepsilon \sin \theta & \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right] \mathbf{x}
$$

- Called Euclidean trans. if $\varepsilon=1$; isometry if $\varepsilon=-1$ or 1 .
- Combination of 2D rotation and translation
- Length and area are preserved (invariant)

Similarity transformation

- 2D projective transformations given as follows:

$$
\mathbf{x}^{\prime} \propto\left[\begin{array}{ccc}
s \cos \theta & -s \sin \theta & t_{x} \\
s \sin \theta & s \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right] \mathbf{x}
$$

- Combination of 2D rotation, translation, and scaling
- Shape and angle are preserved (invariant)

Affine transformation

- 2D projective transformations given as follows:

$$
\mathbf{x}^{\prime} \propto\left[\begin{array}{ccc}
a_{11} & a_{12} & t_{x} \\
a_{21} & a_{22} & t_{y} \\
0 & 0 & 1
\end{array}\right] \mathbf{x}
$$

- Parallelism is preserved
- Points at infinity are mapped to points at infinity

Projective transformation

- The most general one:

$$
\mathbf{x}^{\prime} \propto\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right] \mathbf{x}
$$

- Colinearity and cross-ratio are preserved
- Points at infinity can be mapped to finite points

Transformations and images

- Images of a plane created by different transformations

similarity

affine

projective

Image rectification

- Given a projective transform of a plane, we want to find a transformation that maps it onto a similarity transform of the same plane

- Any projective trans. is determined by four point pairs

