
Detecting Building-level Changes of a City
Using Street Images and a 2D City Map

Daiki Tetsuka Takayuki Okatani
Graduate School of Information Sciences, Tohoku University

okatani@vision.is.tohoku.ac.jp

Abstract

This paper presents a method for detecting city-scale
changes of a city from its street images and a 2D map. Us-
ing SfM to reconstruct point cloud of the structures of the
city, the method estimates the existence of each building by
matching the point cloud with the 3D building structures re-
covered from the map. There are multiple difficulties, such
as inaccuracy of the recovered building structures, large
differences in observation and thus in point cloud size of
individual buildings, and mutual dependency of building
existences due to potential occlusions. To solve these, we
develop a model of how point cloud is generated in the se-
quential processes of SfM, an observation model of a build-
ing wall, and a greedy iterative approach to cope with the
mutual dependency. We experimentally apply the method
to the cities damaged by the tsunami that struck Japan in
2011. The results show the effectiveness of the method.

1. Introduction

This paper considers the problem of detecting large-
scale, building-level changes of a city using street images
and a map of the city. To be specific, using the image
sequence of a city captured by a vehicle-mounted camera
while running the vehicle on its streets and a 2D map of the
city, we judge whether each building in the map is existing
or not.

This study is motivated by a demand to visualize
widespread and drastic changes of a city, such as those
caused by a natural disaster, in an automatic manner only
by running a vehicle with cameras. Its application is not
limited to the assessment of disaster damages. We are even
more interested in the visualization of how a city is recover-
ing from such a disaster. We can visualize the damages by
using a pair of a pre-disaster city map and the post-disaster
images. Instead, by using a pair of a future city map (i.e.
a post-disaster map created at a point in the future) and the
images captured at an earlier time point, we can also create
the snapshot of the recovering process of the city.

Figure 1. Visualization of the temporal changes of a city. The
upper-left image shows the buildings before the disaster. The im-
ages in upper-right, lower-left, and lower-right show the results
obtained by our method using several image sequences captured
at different times. These images visualize how buildings are ini-
tially removed by the disaster and then the remaining buildings are
gradually demolished in recovery operation.

This study has a specific target, which is the cities
severely damaged by the tsunami caused by the massive
earthquake that struck a north-eastern part of Japan on
March 11th, 2011. The disaster can be said to be quite a
rare incident in the history of mankind, as many modern
cities over a wide area are forced to change their shapes in
such a short time. Thus, the visualization of their damages
as well as recovering processes has a lot of applications.
Figure 1 shows the visualization of changes of a city before
and after the tsunami, which is obtained by the method pre-
sented in this paper. It should be noted from a point of view
beyond this study that there is a plenty of room for utilizing
computer vision techniques in such disaster-related applica-
tions. Furthermore, targeting at the tsunami-damaged area
of Japan is also beneficial to the development of computer
vision techniques, since there are many varieties in damages
and recoveries being taken place, which provides a number
of ideal test cases for the development of new techniques.

The goal of this study is to detect the changes of a city in
the above sense from its images and map. The map we con-
sider is a 2D map in which each building is represented as a

Figure 2. An example of 2D city maps.

polygon. Although 3D maps storing 3D structure are avail-
able for some cities in the world, they are rather unavailable
for most areas in the world. On the other hand, 2D maps are
available for most cities and residential areas in the world.
This is indeed the case with the tsunami-damaged area of
Japan. It should be noted here that such 2D maps, including
the ones we are using, represent each building as an approx-
imated polygon of its ground projection; it is impossible to
obtain accurate 3D structures of the buildings from them.

The other input is the sequence of images of the city
which is captured by an omnidirectional camera mounted
on the roof of a vehicle while running it on city streets. The
sequence consists of images captured at every few meters
on the streets and GPS data synchronously recorded with
each image. In our experiments we used an archive of the
images created in this way for the above tsunami-damaged
area; see Fig.3. Instead of (or in addition to) this ground-
level imagery, aerial imagery could also be used for our pur-
pose. In this study, however, we consider using only the
ground-level imagery captured by a vehicle-mounted om-
nidirectional camera, since they are low-cost and provide
high-resolution, ground-level information that are unavail-
able in aerial imagery.

That said, there are a few disadvantages in the ground-
level imagery. A major one is the occurrence of occlusions
in the images. If a building is occluded by other buildings,
it becomes impossible to judge its existence. This problem
will be mitigated by running the vehicle on every street of
the city. However, it is costly and is often impossible due
to some reasons (e.g., under construction work). Thus, we
wish to maximize the accuracy of the judgment as well as
the number of buildings being judged, given an image se-
quence with a limited travel distance of the vehicle.

To achieve the goal outlined above, we propose a method
that first reconstructs point cloud from the images by SfM
and then compares it against the map to estimate the ex-
istences of the buildings on the map. The basic idea is to
match the point cloud with the 3D structure of each building
recovered from the map and then judge its existence by eval-
uating how points emerge around to the building. Despite
the simplicity of the idea itself, there are several difficul-

Figure 3. Examples of omnidirectional images of the tsunami-
damaged cities of Japan.

ties with this approach, such as inaccuracy of the recovered
building structures, large differences in observation and thus
in point cloud size of individual buildings, and mutual de-
pendency of building existences due to potential occlusions.
To cope with these, we model how point cloud is gener-
ated by SfM and also how each building wall is observed in
the images, based on which we evaluate the probability that
each building is existing in a greedy, iterative fashion.

2. Related work
The most closely related to our study is that of Taneja et

al. [12]. It considers the same problem of estimating the
building-level changes by using images and a map. How-
ever, the city maps used in their study are 3D maps. This is
natural since the motivation is to provide a low-cost method
of maintaining the 3D model of a city [11]. Thus, it basi-
cally considers detecting small changes, not drastic changes
such as those caused by a natural disaster. This difference
in motivation also results in technical differences. In our
study, we use 2D city map. Thus we recover the 3D build-
ing structures from them, which have to be necessarily in-
accurate. Although the method of Taneja et al. is designed
to deal with a certain level of inaccuracy in 3D building
models, the inaccuracy in our case is beyond the ranges that
their method can handle. Moreover, to deal with the case
where the image sequence does not cover every street, our
method models potential occlusions among buildings and
attempts to judge the existences of the maximum number of
buildings with maximum accuracy.

Our study is also close to that of Schindler et al. [10] in
that city-scale changes are attempted to be detected by us-
ing the point cloud recovered from images by SfM. Given
a number of photographs of a city lacking precise temporal
information, their method creates the 4D model of the city
as well as estimates when these photographs were captured.
Their method needs 3D models of buildings (although they
could be created from the point cloud if conditions are met).
As in our method, it considers potential occlusions among
buildings and thus can deal with the mutual dependency

SfM

Sequence of omni-

directional images

GPS data of the

vehicle trajectory

City map with

building polygons

Camera poses Point clouds

Point clouds

Registration

Camera poses

Estimation of

buildings’ existence

Result

Input data

Figure 4. Data Flow diagram of the proposed method.

of building existences. However, since the images it uses
are sparse snapshots, their method employs a brute force
approach (i.e., MCMC) to resolve the dependency. Our
method attempts to resolve it more efficiently by leveraging
the nature of the images we use, i.e., a continuous sequence
of images captured from a vehicle running in city streets.

Besides these, there are a number of studies of the detec-
tion of scene changes from its images [8, 9], most of which
use aerial imagery because of the scale of the problem. A
study close to ours among them is the method of detecting
changes by matching the edges extracted in aerial images
with the 3D models of buildings [4]. A number of methods
for a more general setting of detecting scene changes from
aerial images have been proposed [7, 2].

3. Problem formulation
Figure 4 shows the data flow diagram of the proposed

method. It takes three inputs: a sequence of omnidirectional
images, associated GPS data, and a 2D map. The method
then returns whether each building in the map exists or not,
either as a binary value or a continuous probability.

The details of the three inputs are as follows. The omni-
directional image sequence is captured by a camera (Lady-
bug 3 of Point Grey Research Inc.) mounted on the roof of
a vehicle. While running the vehicle on city streets, an im-
age is captured at every two meters. The GPS data recorded
synchronously give the position of the camera when captur-
ing each image. We render the omnidirectional images as
cylindrical panoramic images for SfM; examples are shown
in Fig.3.

The last one of the three inputs is a 2D map, which con-
tains the ground projections of buildings as polygons, as
shown in Fig.2. There is no three-dimensional informa-
tion, or the height data of the buildings. To recover the
3D structures, we assume that each polygon represents the
outer walls of a building and that the walls are at least five
meters high. The 3D structures thus obtained are not so ac-
curate for several reasons, which needs to be considered in
the subsequent processing.

Figure 5. Illustration of differences in observation of individual
buildings (best viewed in color). A building close to the camera
trajectory (the green curve) will have a large viewing angle (the
red triangle). A building can be occluded by others (the blue tri-
angles). How a building is observed in the images determines the
size of the point cloud emerged. Observe also that potential occlu-
sion makes the building existences mutually dependent.

These three inputs are processed as shown in Fig.4.
Firstly, structure-from-motion (SfM) [3, 5, 13] is performed
using the sequence of omnidirectional images, yielding the
point cloud of various structures of the city as well as the
camera trajectory. Next, they are registered to the map using
the GPS data of the camera trajectory. The details of these
“preprocessing” steps are described in the supplementary
material. Finally, for each building in the map, its existence
is estimated from the registered point cloud and camera tra-
jectory as well as the map.

The problem we consider in what follows is the final
part, a thick line box in Fig.4. In this part, we match and
compare the registered point cloud with the building struc-
tures recovered from the map to estimate existence of each
building. If a building exists, a number of points should be
reconstructed around its walls; otherwise, there should be
no point. As mentioned above, each building is represented
as the polygon whose lines represent the walls comprising
the building. We decompose each building into these walls,
for each of which we perform the matching and comparison
with the point cloud. We then combine the results for the
walls to estimate the existence of the building.

4. Details of the proposed method
4.1. Notation

Suppose there are K buildings on the map. We denote the
existence of the k-th building by a binary variable bk = {0, 1}
(k = 1, · · · ,K). We denote the existence of all the buildings
by a vector b = [b1, . . . , bK] and the existence of all but
the k-th building by b−k. Let Jk be the number of the outer
walls of the k-th building. We denote the existence of the
j-th wall of this building by a binary variable wk j = {0, 1}
(j = 1, · · · , Jk). Let L be the number of camera poses (or
equivalently images) in the sequence. We denote the pose
(six DOFs) of the l-th camera by cl (l = 1, · · · , L).

We will use the angle spanned by a wall of a building
viewed from a camera. In its evaluation, we take into ac-

count occlusion by other buildings (the blue triangles of
Fig.5). Let ω(l)

k j be this angle of the j-th wall of the k-th
building viewed from l-th camera pose. Note that the angle
can be evaluated when the existences of all other buildings
(i.e., b−k) are known; thus, it may be written as ω(l)

k j(b−k).

We set ω(l)
k j = 0 if the wall is self-occluded by itself when

viewed from the l-th camera.

4.2. Modeling the size of the point cloud emerged
from a wall

The images are captured while running the vehicle on
streets, and thus individual buildings appear differently in
the images. For example, a building closer to the running
trajectory will appear larger, and the inverse is true. Fur-
thermore, a building can be occluded by other buildings ei-
ther partly or completely, depending on its relative position
to the trajectory; Fig.5 shows an illustration. If a building
appears large and without occlusion in the images, its exis-
tence should be determined with a high confidence, and the
inverse is true. Thus, the estimation must reflect the quality
and quantity of the observations, such as the distance from
the trajectory as well as the occlusion. To do so, we model
the mechanism of how the point cloud emerges.

Each point comprising the point cloud originates from
an image feature point. Thus, we start with modeling how
many feature points are extracted for a wall in a single im-
age. We assume here it to be proportional to the area of
the wall occupying the image. Although the number should
also depend on the texture of the wall, we neglect the depen-
dency by extracting feature points as uniformly as possible
in images.

These feature points are attempted to be matched be-
tween consecutive images. Successfully matched points
form a trajectory of a scene point in the images, from
which its 3D coordinates are computed. Thus, we next con-
sider modeling how frequently the feature points are suc-
cesfully (or unsuccessfully) matched through the image se-
quence. However, the behavior is too complicated to pre-
cisely model, since the matching can fail due to a number
of reasons. Thus, we consider instead evaluating a lower
bound of the point cloud size.

We consider here an ideal, simplified model of how point
cloud is generated for a wall. In the model, the point cloud
size is proportional to the largest area of the wall seen in
the image sequence. The underlying assumption is that new
trajectories always start before the peak of the area, and they
always end after the peak, as shown in Fig.6. As this is
an ideal model, it should give a lower bound; the truth is
always in the higher side, since a point could be lost before
and emerge after the peak, always resulting in the increase
in the number of point trajectories.

We calculate the area of a wall in an image as follows.
As our map does not contain the height information, we as-
sume each wall to be at least five meters high (and thus will

image frames/time	

trajectories	

feature points/area	

(a)	 (b)	

feature points/area	

image frames/time	

Figure 6. (a) A simplified model of how the image trajectories of
the points belonging to a wall emerge and vanish in the image
sequence. In this model, their number is proportional to the maxi-
mum image area of the wall. (b) A wall could be observed multiple
times, which increase the number of points.

consider only the part of the point cloud below this height).
As we are dealing with cylindrical panoramic images, the
area of this part of the j-th wall of the k-th building seen
from the l-th camera is given by

v(l)
k j ∝ ω

(l)
k j

tan−1 H

D(l)
k j

 , (1)

where D(l)
k j is the distance to the wall from this camera and

H = 5 meters. Note that the angle ω(l)
k j depends on potential

occlusion by other buildings, b−k, so does v(l)
k j .

As discussed above, we assume the maximum of v(l)
k j for

l = 1, 2, . . . to give the bound of the point cloud size. More
precisely, the maximum is taken for the period since the
area begins to have a non-zero value and until it becomes
zero. Thus, if there are multiple such periods, as shown
in Fig.6(b), we need to sum over the largest areas for those
periods. This reflects the nature of our SfM implementation;
once a scene point is lost in the tracking, the same point
will be reconstructed as a different scene point when it is
rediscovered. To represent this summation of the largest
areas, we divide the entire sequence S = [1, 2, . . . , L] into
subsequences with non-zero v(l)

k j for each (k, j) pair. Letting
S q (q = 1, . . .) be these subsequences, the summation vk j is
given by

vk j ≡
∑

q

max
l∈S q

v(l)
k j . (2)

Note that vk j depends on b−k.

4.3. Observation model of a wall

To estimate the existence of a wall, we first decide which
points belong to a wall. A point is judged to belong to a wall
if its orthogonal projection lies inside the wall (the rectan-
gle of the polygon line of the wall × five meters high) and
whose distance is less than a threshold (we used 2.5 me-
ters in the experiments to deal with the inaccurate 3D struc-
tures). Let qk j be the number of such points for the j-th wall
of the k-th building. We normalize qk j with the estimate vk j

Figure 7. Definition of rk j. Each rectangle represents a wall. For
the point cloud emerged around the wall, each point is projected
onto it, at which a filled circle is drawn on the wall. The radius
of the circle is chosen to be proportional to the distance from the
camera observing the point to the wall. rk j is the ratio of the filled
area to the entire wall area, which we use as an observation for the
wall.

of the point cloud size as qk j/vk j and use it to estimate the
existence of the wall.

However, points are emerged not only from building
walls but also from other objects. There could be irrela-
vant objects nearby a wall such as telegraph poles, electric
wires, and (remaining) building fonudatations. As these ob-
jects often stand close to building walls, merely counting
the number of points could lead to erroneous estimation.

To mitigate this, we propose an observation model of
walls. It evaluates not only the population size but the dis-
tribution of the points. If a wall exists and generates points,
they should distribute over most of its area in a 2D man-
ner. We could use this fact for our purpose, as the above
irrelevant objects basically generate points only in a one-
dimensional manner.

A possible approach to this is to assume the point cloud
to obey a uniform distribution and then perform some sta-
tistical test of the uniformity. However, this will work only
when there are only the following two cases: the wall exists
and there is no other object nearby or the wall does not exist
and there either are or are not other objects nearby. There
could be in reality the case where a wall and other objects
nearby both exist. This complicates the point distribution
and makes the statistical test more difficult.

Thus, we choose a simpler approach. The qk j points ex-
tracted as above are all projected onto the wall in an orthog-
onal manner. A filled circle is then drawn for each of the
projected points, as shown in Fig.7. The ratio of the filled
area a′k j to the total area ak j of the wall is calculated as

rk j = a′k j/ak j. (3)

We regard this as an observation for the wall. We vary the
radius of the circles depending on the distances to the wall
from the cameras observing the point. To be specific, letting
d be the minimum distance (between the wall to the cameras
observing the point), we set the radius α for each point as

α = crd, (4)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

r
kj

Figure 8. Example histograms of rk j for existing walls (in green)
and non-existing walls (in red). These are created for the selected
walls that have a large vk j value.

where cr is a constant; we set it to 0.033 radians throughout
the experiments. It corresponds to an approximated aver-
age distance between pairs of the nearest feature points in
images, where we assume their density to be identical and
uniform. We neglect the effect of foreshortening here.

We judge the existence of the wall (k, j) from the obser-
vation rk j. To do this, we consider and model two densities
p(rk j|wk j = 1; vk j) and p(rk j|wk j = 0; vk j). Note that vk j,
which can be calculated only if b−k is given and thus should
be treated as a random variable, is treated here as a param-
eter. Figure 8 shows example histograms created from the
data of a city with its ground truth of building existences.
These histograms are created for the selected walls that have
high visibility, i.e., have a large vk j value. It is seen that the
density of rk j for existing walls has a volume around a large
value and the density for non-existing walls has a volume
around zero.

These two densities are considered to vary their shapes
depending on the value of vk j and are functions of two vari-
ables. To model them, we need a vast amount of training
data, which requires ground truths of building existences for
a number of cities. However, such ground truths are costly
to create because of their scale. Therefore, we employ the
simplest model here, in which each density changes only
once depending on vk j as

p(rk j|wk j = 1; vk j) =

{
pexist(rk j) vk j ≥ cv,
pinvis(rk j) otherwise. (5a)

p(rk j|wk j = 0; vk j) =

{
pvanish(rk j) vk j ≥ cv,
pinvis(rk j) otherwise. (5b)

We set the thresholding value cv to 0.1 in the experiments.
It determines which walls to be judged since they are well
observed and which ones not to be judged since they are in-
sufficiently observed. Assuming a wall to be observed once
in the image sequence, cv = 0.1 is roughly equivalent to
that the wall occupies at maximum about 5% width of the
cylindrical panoramic image. The two densities pexist and
pvanish model the green and the red histograms shown in
Fig.8, respectively. We choose truncated Gaussian densities
for them; N(0.5, 0.03)/0.9961 for pexist N(0.0, 0.01)/0.5 for
pvanish. (The denominators normalize the density.) The re-
maining pinvis(rk j) indicates the density for walls that have
low visibility; there is only a single density regardless of the

existence of the wall. This density needs not to be explicitly
modeled in the estimation of building existences described
next.

4.4. Estimation of building existences
We now consider how to estimate the existence of each

building. To do this, we consider evaluating the posterior
p(bk = 1|rk1, . . . , rkJk) of the existence of the k-th build-
ing given all the associated observations rk j’s. Although the
variables rk1, . . . , rkJk are mutually dependent on each other
in a complicated way, we introduce a naive independence
assumption and approximate it as

p(bk = 1|rk1, . . . , rkJk) ∝ p(bk = 1)
Jk∏
j=1

p(rk j|bk = 1)

∝ p(bk = 1)
Jk∏
j=1

p(rk j|wk j = 1). (6)

The second equality holds since bk = 1 means wk j = 1 for
any j and only wk j among wk1, . . . ,wkJk has a relation to rk j.
Assuming there is no prior on bk and set p(bk = 1) = p(bk =
0) = 1/2, it becomes

p(bk = 1|rk1, . . . , rkJk) =

∏Jk
j=1 p(rk j|wk j = 1)∏Jk

j=1 p(rk j|wk j = 1) +
∏Jk

j=1 p(rk j|wk j = 0)
.

(7)

Note that the posterior depends on vk1, . . . , vkJk as in
p(rk j|·)′s although they are omitted for simplicity.

4.5. Greedy iterative estimation
Eq.(7) gives the existence probability of the k-th build-

ing. However, we cannot evaluate it straightforwardly be-
cause of the mutual dependency of the building existences;
the densities of rk j on the right hand side (e.g., p(rk j|wk j =

1; vk j)) depend on vk j, which can only be evaluated if the
existences b−k of other buildings are given.

To cope with this, we propose a greedy iterative ap-
proach. Starting with assuming all the buildings to be
existing (bk = 1), we iteratively make a binary decision
(bk = 0/1) one by one for the buildings in order of de-
creasing confident level. The confidence level is given by
p(bk |·) itself of Eq.(7) (that is, how close to either 0 or 1 it
is). In accordance with the determination of bk’s for some
buildings, we recalculate vk j, which will change the values
of p(bk |·)’s.

This iteration should work, because the existence of a
building facing a street on which the vehicle run should be
able to be correctly estimated independently of other build-
ings. After the existence of this building is determined,
there will be more chance of correctly determining those
of the buildings potentially occluded by this building.

To be more specific, we introduce a binary variable dk =

{0, 1} which indicates whether or not the decision has been
made for the k-th building; dk = 1 means decided and dk = 0
means undecided. We recompute vk j’s at each iteration step,

Algorithm 1 The algorithm for estimating building exis-
tences.
Input: Points and camera trajectories generated by SfM and
building polygons. Output: Existences bk’s for the buildings
judged (dk = 1) and existence probabilities of Eq.(7) for oth-
ers.

1: Initialize dk = 0 for k = 1, . . . ,K.
2: Compute rk j for any possible pair (k, j) for k = 1, . . . ,K and

j = 1, . . . , Jk.
3: repeat
4: Assuming that the buildings with dk = 0 and those with

dk = 1 and bk = 1 are existing, evaluate vk j for any pair
(k, j) according to Eq.(2).

5: Compute the probability of Eq.(7) for each of the buildings
with dk = 0 using the precomputed rk j’s and the latest vk j’s.

6: Set bk and dk according to Eq.(8).
7: until Existence is judged for no new building.

where occlusion is evaluated by using the existences bk’s
for the decided buildings with dk = 1 and by assuming the
buildings with dk = 0 to exist. In the first iteration, we
set dk = 0 for all the buildings resulting in evaluating vk j’s
by assuming all the buildings to exist (but the k-th one).
The buildings facing a street on which the vehicle run will
appear large without occlusion in the images, and thus its
facing wall(s) has a large vk j value.

The straightforward implementation of the above pro-
cess requires large computational time, as vk j’s are updated
at the decision of every building. To reduce the cost, we in-
corporate two approximation. One is to introduce a thresh-
old cm for confidence and make a decision immediately for
all the buildings with confidence levels beyond this thresh-
old. This significantly reduces the count of vk j updates, or
equivalently the number of iteration counts. The decision
is made for undecided buildings with dk = 0 by calculating
the probability of Eq.(7), which we denote by p(bk |·) here,
and set bk and dk as follows:

bk ← 0 and dk ← 1 if p(bk |·) < 1/2 − cm,
bk ← 1 and dk ← 1 if p(bk |·) > 1/2 + cm.

(8)

Note that we do nothing if 1/2−cm ≤ p(bk |·) ≤ 1/2+cm. The
parameter cm controls how aggressive the decision is made;
it ranges from 0.0 to 0.4 in the experiments. The algorithm
is summarized as Algorithm 1.

5. Experimental results
We conducted experiments to test the effectiveness of the

proposed method. We used an image archive created for
the tsunami-damaged area of the north-eastern coastline of
Japan, from which we chose three cities that differ in the
amount of damages: Otsuchi Town, Miaygino Ward, and
Kamaishi City. Figure 9 shows their SfM reconstructions
registered with the maps. The number of images used for
SfM are 2870, 18002, and 1266, respectively.

(a)

(b)

(c)

Figure 9. SfM reconstructions for the three cities tested in the experiments; best viewed in color. The reconstructed points and camera
trajectories are shown as blue dots and green curves, respectively. The building polygons are shown as red lines. (a) Otsuchi town
(reconstructed from 2870 images). (b) Miyagino ward (18002 images). (c) Kamaishi city (1266 images).

As there is no previous study dealing with the same
problem setting as our study, we implement two variants
of the proposed method by omitting the main ingredients,
and compare them in performance to evaluate their effec-
tiveness.

Apart from the basic idea of comparing SfM point cloud
with building walls, there are three ingredients in the pro-
posed method that we think are contributions of this study.
The first one is vk j introduced in Sec.4.2 to quantify how
each wall appears in images. The second is rk j introduced
in Sec.4.3 to quantify the uniformity of points on each wall.
The third is the greedy iterative scheme to cope with the
mutual dependency of building existences. To test the ef-
fectiveness of the first two, we consider a variant that does
not use vk j and one that does not use rk j. To be specific,
the first variant is implemented by simply setting cv = 0
in Eq.(5), which is evaluated in Eq.(7). The second vari-
ant is implemented by replacing rk j with a simpler quantity
qk j/vk j, which is first introduced in Sec.4.3; the densities for
the quantity are modeled as in Eq.(5) for rk j. To examine the
effectiveness of the greedy iterative scheme, we varied the
margin cm controlling how many buildings to be judged for
each of the three methods.

Table 1 shows the results. The method with all the pro-
posed ingredients, its variant with qk j/vk j instead of rk j, and
its variant omitting vk j are denoted by “v and r,” “v and
q,” and “q alone,” respectively. It is observed from the re-
sults that “v and r” achieves the best accuracy for the two
cities; “v and q” is the best for the third city but “v and r” is
comparatively good; and “q alone” yields a very inaccurate
result for the third city. The reason for the last observation
may be due to the differences among the cities that a large
number of buildings are demolished in the first two cities,

whereas a relatively small number of buildings are demol-
ished in the third city.

Figure 10 visualizes how the building existences are de-
cided with the iteration counts. The buildings that have not
been judged, those judged to be existing, and those judged
to be non-existing are shown in green, blue, and red, respec-
tively. It is seen that the existences of a certain number of
buildings are judged to be either existing or non-existing at
each step. It is also seen that the buildings that are distant
from the camera trajectory (shown in blue curves) and/or
are occluded from others are left undecided until the end.
These show that the algorithm works as we intended. More
results for other cities and also the analyses of erroneous
estimations of building existences are given in the supple-
mentary material.

Figure 1 shows the results of applying our method to the
image sequences captured at different times after the disas-
ter. It demonstrates that our method can be used to visualize
how a city changes its structure in the temporal axis.

6. Summary
We have described a method for detecting building-level

changes of a whole city by using its 2D map and image se-
quence captured by a vehicle-mounted camera. It uses SfM
to reconstruct 3D point cloud of the structure of the city
and matches it with the 3D structures of buildings recov-
ered from the 2D map. To cope with multiple difficulties
with the approach, introducing the model of the mechanism
of how point cloud is generated and also the observation
model of each building wall, the method evaluates the ex-
istence probability of each building in a greedy, iterative
fashion. The experimental results show the effectiveness of
the method. A future work will be further improvement of

Table 1. Recognition rates of the compared methods. The numbers in the leftmost column is (the number of existing buildings)/(the
total number of buildings). In each cell, the upper number is the recognition rate and the lower number is the answering rate, both in
percentages(%).

v and r v and q q alone
cm 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4

Otsuchi 95.6 96.1 97.3 96.8 97.5 91.9 92.0 92.3 92.7 93.9 94.1 94.4 94.7 94.9 95.2
83/887 78.9 78.4 77.3 76.3 73.5 78.4 77.8 77.3 76.9 75.4 100.0 99.8 99.1 98.6 97.6
Miyagino 89.4 90.7 91.6 92.5 94.1 84.7 85.2 85.8 86.2 86.7 86.9 87.5 88.4 89.2 90.0
304/1088 80.0 78.0 76.3 76.2 69.1 78.5 77.8 76.7 75.6 74.1 100.0 98.9 97.3 95.9 94.3
Kamaishi 90.0 90.3 90.3 92.2 93.3 93.3 93.7 94.1 94.1 94.1 53.5 53.9 56.1 56.5 59.5
218/269 78.8 78.1 76.6 71.4 68.4 78.8 78.4 78.1 77.3 77.3 100.0 98.1 95.2 93.3 87.4

Initial Iteration 1 2 3

4 5 Final Ground truth

Figure 10. Intermediate results at different iteration counts for Otsuchi Town; best viewed on a color monitor. Green, blue, and red polygons
indicate the buildings that have not been judged yet, those judged to be existing, and those judged to be non-existing, respectively. The
camera trajectory is displayed in dark blue.

the estimation accuracy.

References
[1] H. Bay, A. Ess, T. Tuytelaars, L .Van Gool. SURF: Speeded

Up Robust Features. Computer Vision and Image Understanding,
110(3):346–359, 2008.

[2] D. Crispell, J. Mundy, and G. Taubin. A Vairable-Resolution Proba-
bilistic Three-Dimensional Model for Change Detection. Geoscience
and Remote Sensing, 50(2):489–500, 2012.

[3] R. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision Second Edition. Cambridge University Press, 2004.

[4] A. Huertas and R. Nevatia. Detecting Changes in Aerial Views of
Man-Made Structures. In Proc. International Conference on Com-
puter Vision, pages 73–80, 1998.

[5] D. Nistér. An Efficient Solution to the Five-Point Relative Pose
Problem. IEEE Trans. Pattern Analysis and Machine Intelligence,
26(6):766- -777, 2004.

[6] M. Pollefeys, D. Nistér, J.-M. Frahm, A. Akbarzadeh, P. Mordohai,
B. Clipp, C. Engels, D. Gallup, S.-J. Kim, P. Merrell, C. Salmi,
S. Sinha, B. Talton, L. Wang, Q. Yang, H. Stewénius, R. Yang,
G. Welch, and H. Towles. Detailed Real-Time Urban 3D Recon-

struction from Video. International Journal of Computer Vision,
78(2-3):143–167, 2008

[7] T. Pollard and J. L. Mundy, Change Detection in a 3-D World. In
Proc. Computer Vision and Pattern Recognition, pages 1–6, 2007.

[8] R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam. Image Change
Detection Algorithms: A Systematic Survey. IEEE Trans. Image
Processing, 14(3):294–307, 2005.

[9] K. Sakurada, T. Okatani, and K. Deguchi. Detecting Changes in 3D
Structure of a Scene from Multi-view Images Captured by a Vehicle-
Mounted Camera. In Proc. Computer Vision and Pattern Recogni-
tion, pages 137–144, 2013.

[10] G. Schindler and F. Dellaert. Probabilistic temporal inference on re-
constructed 3D scenes. In Proc. Computer Vision and Pattern Recog-
nition, pages 1410–1417, 2010.

[11] A. Taneja, L. Ballan, and M. Pollefeys. Image based detection of
geometric changes in urban environments. In Proc. International
Conference on Computer Vision, pages 2336–2343, 2011.

[12] A. Taneja, L. Ballan, and M. Pollefeys. City-Scale Change Detection
in Cadastral 3D Models using Images. In Proc. Computer Vision and
Pattern Recognition, 2013.

[13] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle
Adjustment - Modern Synthesis. In Proc. International Conference
on Computer Vision, pages 298–372, 1999.

