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Abstract

This paper proposes a method for detecting changes of a scene using a pair of its
vehicular, omnidirectional images. Previous approaches to the problem require the use
of a 3D scene model and/or pixel-level registration between different time images. They
are also computationally costly for estimating city-scale changes. We propose a novel
change detection method that uses features of convolutional neural network (CNN) in
combination with superpixel segmentation. Comparison of CNN features gives a low-
resolution map of scene changes that is robust to illumination changes and viewpoint
differences. Superpixel segmentation of the scene images is integrated with this low-
resolution map to estimate precise segmentation boundaries of the changes. Our moti-
vation is to develop a method for detecting city-scale changes, which can be used for
visualization of damages of a natural disaster and subsequent recovery processes as well
as for the purpose of maintaining/updating the 3D model of a city. We have created a
dataset named Panoramic Change Detection Dataset, which will be made publicly avail-
able for evaluating the performances of change detection methods in these scenarios. The
experimental results using the dataset show the effectiveness of our approach.

1 Introduction
This paper proposes a method for detecting changes of a scene using a pair of its vehicular,
omnidirectional images. Figure 1 shows an example of such image pairs taken at different
times. Apparently, there are temporal differences in illumination and photographing con-
ditions. Moreover, there has to exist visual difference in camera viewpoints, although they
were captured from a vehicle running on the same street and were matched using GPS data.
This is due to differences in vehicle paths and shutter timing. The type of scene changes
targeted here includes 3D (e.g. vanishing/emergence of buildings, cars etc.) as well as 2D
changes (e.g. changes of textures on building walls). To precisely detect these changes from
such an image pair, it is necessary to overcome these unwanted visual differences.
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Figure 1: Example of an image pair of a scene captured two months apart.

To cope with these issues, some of the previous studies consider the problem in the 3D
domain. They assume that a 3D model of a scene is given beforehand or can be created
from images, and that the input images can be registered to the model with pixel-level ac-
curacy [14, 20, 24]. However, a 3D model is not always available for every city. Besides,
it is sometimes hard to perform precise image registration, due to lack of sufficient visual
features. These are particularly the case when the scene undergoes enormous amount of
changes. Working in the 3D domain tends to require large computational cost, which can be
another difficulty when we want to detect changes for a large city.

Thus, we tackle the change detection problem in the 2D domain. That is, we consider
detecting changes based on the direct comparison of a pair of images. The major issue is
then how to deal with the above unwanted visual differences (i.e., viewpoint differences etc.)
To cope with this, we propose to use the features extracted by convolutional neural networks
(CNNs). To be specific, we use a fully trained CNN for large-scale object recognition task
[11] in a transfer learning setting. It was reported in the literature that using activation of
the upper layers of a CNN trained for a specific task can be reused for other visual clas-
sification tasks. Several recent researches imply that the upper layers of CNNs represent
and encode highly-abstract information about the input image [2, 3, 27]. We conjecture that
highly-abstract (or object-level) changes can be detected by using the upper layers, whereas
low-level visual changes (e.g. edge, texture etc.) will be detected using the lower layers. We
show that this conjecture is true through several experimental results.

As will be shown below, CNN features indeed can detect the occurrence of scene changes
accurately in the presence of the above unwanted image changes. However, they cannot pro-
vide precise segmentation boundaries of the changes by their nature. Thus, our method
integrates the CNN features with superpixel segmentation of the input images. To be spe-
cific, the method first divides the input images into coarse grids, and estimates the likelihood
of scene changes at each grid cell by comparing the CNN features of the grid cell at differ-
ent times. Next, the method projects the detected changes at the grid cells into superpixel
segments to obtain precise boundaries of the changes. The outline is shown in Fig. 2.

The motivation behind this study is to develop a change detection method that can be
used for visualization of damages of a natural disaster and subsequent recovery processes as
well as for the purpose of maintaining/updating the 3D model of a city. The main application
scenario of the method is as follows. A vehicle with an omnidirectional camera and a GPS
sensor on its roof is driven on every street of a city twice some time apart, yielding two sets
of a large number of omnidirectional street images. Then, two images from each of the two
sets are paired that are captured from the closest viewpoints by using the GPS data. Each
image pair is inputted to the proposed method to detect changes for the pair, resulting in
the estimation of changes over the entire city. To evaluate the method, we have created a
dataset named Panoramic Change Detection Dataset, which will be made publicly available
for evaluating the performances of change detection methods in this scenario.
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Figure 2: Flowchart of the proposed change detection method.

2 Related Work

There are a large amount of studies on the problem of detection of scene changes [1, 4, 5, 9,
10, 17, 18, 22, 28, 29]. They can be classified into several categories depending on type of
scene changes to detect, methods, available information etc.

A standard approach is to detect changes in the 2D (image) domain [17, 19]. A typical
method is to create an appearance model of a scene from a set of its images captured at
different times, against which it compares a newly captured query image to detect changes.
The major concern in this type of studies is with how to deal with irrelevant appearance
changes such as difference in illumination. It usually requires the images to be captured
from the same viewpoint, and thus cannot deal with query images captured from different
viewpoints.

There are studies that formulate the problem in the 3D domain [5, 8, 9, 17, 23]. They
build a model of the target scene in a “steady state,” and compare a query image against it
to detect changes. A 3D model of the scene is often created by using a 3D sensor other than
cameras. In [8], to estimate the existence of a building, the edges extracted from its aerial
images are matched with the projection of its 3D model to detect changes. The studies of
Taneja et al. [23, 24] are classified into the same category. Their method is designed for
maintenance/updating of an existing 3D model of a city. The scenario is that the method is
used to detect scene changes in a low-cost manner, narrowing down the part to be remeasured
by a 3D sensor to update the model.

There is another type of studies, where a large number of multi-view images of a scene
are used to create its spatio-temporal model by leveraging the method of structure from
motion. Schindler et al. proposed a method that uses a large number of images of a city that
were taken over several decades [20]. Their method can perform several types of temporal
inferences, such as estimating the time when each building was constructed. The recent
work of Matzen and Snavely [14] is similar to that of Shindler et al. in the spirit. Their
method uses internet photo collections to detect 2D changes of a scene, such as changes
of advertisements and painting on a building wall. Assuming that a sufficient number of
multi-view images of a scene are available, both methods use SfM to reconstruct 3D models
of a scene [1, 4, 18, 22, 28, 29].

The method proposed in this paper falls in the class of 2D methods. It compares a pair
of (omnidirectional) images to detect scene changes. As these images are captured at every
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several meters from a vehicle running on a street, their viewpoints can be several meters apart
in the worst case. Assuming that the image pair is aligned up to this accuracy (by using GPS
data), the method manages to distinguish changes to be detected from irrelevant changes due
to the difference in viewpoint, illumination and photographing condition. It does not need
a dense 3D model of a scene, or a large number of images to perform SfM to build a 3D
model.

3 Change detection using grid features
Figure 2 illustrates the outline of the proposed method. It consists of the three components: i)
extraction of grid features, ii) superpixel segmentation, and iii) estimation of sky and ground
areas by Geometric Context. These are described below.

(i) Extraction of grid features We denote two input images by It and It ′ , where t and
t ′ are the times at which they were captured. First, It and It ′ are divided into grid cells
g(= 1, ...,Ng). A feature is extracted from each grid cell g, yielding xg

t and xg
t ′ .

The changes that we want to detect are object-level changes (e.g, the emergence/vanish-
ing of buildings and cars) and not low-level, appearance changes due to changes in view-
points, illumination or photographing conditions. To distinguish these two, the proposed
method uses the activation of a upper layer of a deep CNN for the grid features xg

t and xg
t ′ .

To be specific, we use a pooling layer of the CNN. Each feature (e.g., xg
t ) is the activation of

all the units in the same location across the maps of the pooling layer. Thus xg
t has the same

number of elements as the maps of the pooling layer. The details are described in Section 4.
Next, these features are normalized so that ‖xg

t‖2 = 1, and then their dissimilarity is
calculated at each grid cell g as

dg = ‖xg
t −xg

t ′‖2. (1)

Then, the dissimilarity dg is projected onto the input images It and It ′ , determining the pixel-
level dissimilarity dp(p = 1, ...,Np); Np is the number of pixels. This is done by simply
setting dp = dg for any pixel p contained in the grid cell g.

(ii) Superpixel segmentation The difference in viewpoint is arguably the major source of
difficulties for 2D change detection methods. The use of the CNN features is expected to
help mitigate this difficulty, owing to the property of the CNN features invariant to geometric
transformation such as translation, 3D rotation, and even more complicated ones. However,
the resolution of the dissimilarity map dp’s is basically very low. We use superpixel segmen-
tation to refine the dissimilarity map to hope for obtaining precise boundaries of the detected
changes.

This starts with computing superpixel segmentation of It and It ′ . Let st be a superpixel
and St be the set of superpixels. We define the dissimilarity dst at a superpixel st ∈ St to be
the average of all the pixels in st as

dst =
1
|st | ∑

p∈st
dp. (2)

We denote the maximum value of dst and dst′ by dmax, i.e., dmax = max(dst ,dst′ ).
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(iii) Estimation of sky and ground areas by Geometric Context In the last step of the
proposed method, Geometric Context [6] is used to remove the segments of sky and ground
from the images. Geometric Context is a segmentation method that is known to be robust to
changes in illumination and photographing conditions. It estimates probabilities of the sky
and the ground at each pixel (psky

t , pground
t) in the input image It . Using these, we remove

these areas from the images, converting the dissimilarity at each pixel into dp as

dp =

 0 (((psky
t > a)∧ (psky

t ′ > a))
∨((pground

t > b)∧ (pground
t ′ > b))),

dmax (otherwise)
(3)

where a = tsky and b = tground are constant values within the range of 0 ≤ tsky, tground ≤ 1.

4 CNN layer activation as grid features

When applied to object recognition, CNNs are robust (i.e., invariant) to differences in view-
points and illumination condition, and nevertheless are sensitive to highly-abstract, semantic
differences of images. This property is the key to the success of CNN for object category
recognition. The reason why we employ CNN features is that we expect this property will
also be useful for our problem. That is, we expect that if a scene has not changed, then its
image feature should not change even when the viewpoints or illumination conditions are
slightly different between the times of image acquisition; and the converse is true.

We choose one of the state-of-the-art CNN (known as the VGG net) for image recogni-
tion, proposed by Simonyan and Zisserman [21]. It has sixteen layers, from which we select
one of its five pooling layers. It has convolutional layers with stride one, so that the spatial
resolution does not change before and after each convolution layer. The feature of each grid
is normalized so that its vector has length one, as mentioned above. As the CNN uses the
rectified linear units (ReLUs) [11], the feature vector will have non-negative values. Hence,
each element di of the dissimilarity dg between different time images is within the range
[0,

√
2].

We consider two models of this CNN trained for two different tasks. One is a model
trained for large scale object recognition of ILSVRC. The other is a model trained for a
scene classification task using the SUN dataset [30]. To be specific, starting from the above
fully-trained model for ILSVRC, we retrain it using the SUN dataset. The idea is that we
may expect the improvement of performance by tuning the CNN to more relevant task for
our purpose.

Instead of the CNN features, any feature may be used for the grid feature. The next
section compares the CNN feature against Dense-SIFT [12] and local patch features (raw
pixel brightnesses). Before CNNs were found to perform well for object recognition, Bag-
of-Visual Words (BoVW) and Fisher vector, which encode the population of local features
such as SIFT, are the former state-of-the-art [12, 13, 15, 16, 25, 26].
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5 Experimental results

5.1 Panoramic change detection dataset
We have created Panoramic Change Detection Dataset and used it for the experiments1.
The dataset consists of two subsets, named "TSUNAMI" and "GSV." "TSUNAMI" consists
of one hundred panoramic image pairs of scenes in tsunami-damaged areas of Japan. "GSV
consists of one hundred panoramic image pairs of Google Street View. The size of these
images is 224×1024 pixels.

For each of them, we hand-labeled the ground truth of scene changes. It is given in
the form of binary image of the same size as the input pair of images. The binary value
at each pixel indicates that a change has occurred at the corresponding scene point on one
of the paired image (which we call the query image). We defined the scene changes to
be detected as 2D changes of surfaces of objects (e.g., changes of the advertising board)
and 3D, structural changes (e.g., emergence/vanishing of buildings and cars). The changes
due to differences in illumination and photographing condition and those of the sky and the
ground are excluded, such as changes due to specular reflection on building windows and
changes of cloud and signs on the road surface. The differences in viewpoint and illumination
make it difficult to judge the existence of changes even by human vision. In fact, it took
twenty minutes on average for an annotator to create the ground-truth map for an image pair.
This demonstrates the necessity of a method for detecting scene changes automatically and
accurately.

5.2 Detailed experimental configuration
In the proposed method, there are several parameters: (1) threshold tdist for the grid feature
used to binarize the detected changes, (2) thresholds used for Geometric Context to detect
sky and ground (tsky, tground), and (3) the parameters of superpixel segmentation.

In the experiments, the thresholds tdist are determined by 5-fold cross-validation using
the change detection dataset (Table 1). In the case of pooling-layer features and Dense-SIFT,
di ∈ dg takes a value within the range of 0 ≤ di ≤

√
2 because all elements of the features

are non-negative values. In the case of gray-scale local-patch, di takes a value within the
range of 0 ≤ di ≤ 2. The thresholds of pool-3, 4, 5 and gray-scale local-patch are almost the
median values of their range. As for the thresholds for Geometric Context, they are fixed for
all the experiments as tsky = 0.2 and tground = 0.8.

For the superpixel segmentation, we used Felsenszwalb’s method of efficient graph based
image segmentation [7]. The parameters of the superpixel segmentation (scale, diameter of
a Gaussian kernel, minimum component size) are fixed for all experiments.

As mentioned earlier, we use two CNN models having the same structure as Simonyan-
Zisserman [21] trained for object category recognition (ILSVRC) and scene classification
(SUN).

For the sake of comparison, we used Dense-SIFT [12] and gray-scale local patch for grid
features. These features are generated independently for each grid cell. We chose the same
grid size as that when using the pool-5 layer. For Dense-SIFT, we extract descriptors at four
different scales whose basic size is the grid size, and concatenate them to form a feature

1The data used in this study (the pairs of the omnidirectional panoramic images taken at different time points
and the hand-labeled ground-truth of change detection) are available from our web site: http://www.vision.is.to-
hoku.ac.jp/us/download/
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Table 1: Thresholds tdist determined by 5-fold cross-validation using Panoramic change de-
tection dataset "TSUNAMI" and "GSV".

HHH
HH

pool5 pool4 pool3 pool2 pool1 Dense Patch pool5 pool4
SIFT (SUN) (SUN)

TSUNAMI 0.75 0.75 0.71 0.64 0.35 0.24 0.83 0.76 0.86
GSV 0.75 0.78 0.72 0.65 0.58 0.24 0.92 0.76 0.88
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(a) TSUNAMI (b) GSV
Figure 3: F1 scores of the change detection by various methods (average of 100 images in
TSUNAMI and GSV dataset). ’pool-x’ indicates the features extracted from the correspond-
ing pooling layer of the CNN trained for the ILSVRC object recognition. ’pool-x(SUN)’
indicates similar features from the CNN trained for a scene classification task using the SUN
database.

vector. That is, a grid feature of Dense-SIFT has 128× 4 = 512 elements. Local patch
feature is the set of the raw, gray scale pixels within a grid cell. Each grid cell is resized to
16×16 pixels, generating a feature vector of of 256 elements.

5.3 Comparison of the results
Figure 3 shows the F1 scores obtained when each feature is used for the grid feature. It is seen
from the figure that the features of pool 4 and 5 achieve the best F1 scores. The retraining of
the CNN for a scene recognition task does not improve the results much. It is also seen that
upper pooling-layers perform better than lower pooling-layers. F1 scores of pool 1 is almost
the same as that of the baseline methods (Dense-SIFT, gray-scale local-patch). These results
validate the use of the CNN feature for our change detection problem.

Comparing the results for “TSUNAMI” and “GSV,” the latter is worse in terms of accu-
racy. We think that this is because (i) some image pairs have too large a viewpoint difference
to be dealt with by the grid size we used, and (ii) conversely, most of the scene changes are
too small to be dealt with by the grid size. These two are contradict with each other, and it is
not easy to resolve this contradiction immediately.

Figures 4 and 5 show examples of the result of change detection. (See the supplemen-
tary note for other results.) It is observed from them that the proposed method was able
to correctly detect the scene changes, for example, demolished and new buildings, cars and
debris. In some cases, Geometric Context could not accurately estimate sky due to electrical
wire and pole, or could not distinguish between the ground and low height object (e.g., debris
and car). The proposed method was nevertheless able to detect object-level scene changes
fairly accurately.

We also compared the results obtained when using different pooling layers of the CNN
for grid features, as shown in Fig.6. Note that the grid size for each result is determined by
the number of units in a chosen pooling layer. The results show that the feature of upper
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Input image (query) Input image (database)

Ground-truth (superimposed) Ground-truth (mask)

Change estimation (binarized) Change estimation (distance)

Superpixel segmentation (query) Superpixel segmentation (database)

Feature distance (each grid) Feature distance (interpolation)

Feature distance in superpixel (query) Feature distance in superpixel (database)

Sky probabilities (query) Sky probabilities (database)

Ground probabilities (query) Ground probabilities (database)

Figure 4: Results of change detection using pool-5 feature of CNN (Frame No. 1/100 in
change detection dataset of tsunami)

pooling-layer discriminates highly abstract, object-level differences in the scene, whereas
that of lower pooling-layer detects the difference of low-level visual feature (e.g., edges).
This tendency confirms our conjecture described earlier. Furthermore, it implies that we
could improve estimation accuracy by adaptively choose layers depending on the abstraction
level of interest.
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Input image (query) Input image (database)

Ground-truth (superimposed) Ground-truth (mask)

Change estimation (binarized) Change estimation (distance)

Superpixel segmentation (query) Superpixel segmentation (database)

Feature distance (each grid) Feature distance (interpolation)

Feature distance in superpixel (query) Feature distance in superpixel (database)

Sky probabilities (query) Sky probabilities (database)

Ground probabilities (query) Ground probabilities (database)

Figure 5: Results of change detection using pool-5 feature of CNN (Frame No. 1/100 in
change detection dataset of google street view)

6 Summary
This paper has described a novel method for detecting temporal changes of a scene from a
pair of its images. To cope with differences in viewpoint, illumination etc. between different
times, the method uses activation of an upper layer of a convolutional neural network, which
are expected to be invariant to the appearance changes caused by such differences. To re-
cover spatial resolution lost by the pooling operations of the CNN, the method integrates the
CNN features with superpixel segmentation of the scene images. For the purpose of exper-
imental evaluation, we have created a dataset named Panoramic Change Detection Dataset
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Input image (query) Input image (database)

Ground-truth (superimposed) Ground-truth (mask)

Estimation result (pool5, threshold=0.75) Feature distance (pool5)

Estimation result (pool4, threshold=0.75) Feature distance (pool4)

Estimation result (pool3, threshold=0.71) Feature distance (pool3)

Estimation result (pool2, threshold=0.64) Feature distance (pool2)

Estimation result (pool1, threshold=0.35) Feature distance (pool1)

Figure 6: Feature distance of each grid (pooling-layers of CNN). Distance of normalized
features between each grid di ∈ dg takes a value within the range of 0 ≤ di ≤

√
2 because all

elements of pooling-layer feature are non-negative values.

which includes images taken at tsunami-damaged areas and Google Street View images.
The experimental results obtained using the dataset show the effectiveness of the proposed
approach.
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