P1A-08 Detecting Changes in 3D Structure of a Scene from Multi-view Images Captured by a Vehicle-mounted Camera
Ken Sakurada, Takayuki Okatani, Koichiro Deguchi (Tohoku Univ., Japan)

Goal: Estimate large-scale structural changes of a city from their two image sequences captured at different times

Background: Difficulty with dense depth estimation (i.e., multi-view stereo) from images captured by a ground vehicle

Idea: Estimate only the probability of a depth change at each pixel without explicitly estimating the depths

Motivation

- **Visualize the damages and the recovery/reconstruction processes of the tsunami affected-areas**
 - Since mid-April 2011
 - 2 to 3 months apart
 - 25 million images
 - Every 2m
 - 20 TB (as of Dec. 2012)

Dense 3D reconstruction from ground vehicle images

- A lot of missing parts tend to be missing
- The differentiation of two reconstructions does not give good results

Estimation of relative camera poses

- Perform SFM independently for each of the two sequences
- Roughly align the two reconstructions based on GPS data
- Reestablish the correspondences of feature points by incorporating a distance constraint
- Perform bundle adjustment over the two sequences

Detection of temporal changes of a scene

- **Goal:** Estimate the large-scale structural changes of a city.

Detection of temporal changes of a scene

- **Goal:** Estimate the large-scale structural changes of a city.

Experimental results

- The proposed method outperforms the MVS-based methods

 Proposed method
 - Disparity space: 128 blocks ($r = 128$)
 - No prior on the probability of scene changes $p_{\text{inc}} = 0.5$

 MVS-based methods
 - The structures of a scene is reconstructed based on MVS
 - Then, they are differentiated to detect scene changes

Conclusion

- The proposed method estimates the probability of the structural changes independently at each pixel by integrating the estimated depth densities.
- Experimental results show that the proposed method outperforms the MVS-based methods.

Change detection dataset

- The dataset used in this study are available from our web site
 - http://wwwvision.is.tohoku.ac.jp/~us/download/
 - Images of two different city streets
 - Data of each street consists of two image sequences captured at different times, the estimated camera poses, and several hand-labeled ground-truths