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Various studies of psychophysics imply
that material perception in human vision is
interconnected with perception of object cat-
egory. An observation is that human can
perceive some material properties and cate-
gories of objects only after correct recogni-
tion of the object categories. The problem is
how to model such dependencies, and utilize
them to accurately perform a task of interest
(material recognition in our case).

OUR CONTRIBUTIONS
In this paper, we propose a feature selec-

tion method to select and combine deep fea-
tures learned using a transfer learning set-
ting. Our contributions are:

• We propose a method for material
recognition by selecting and integrat-
ing multiple features of different CNN
models. They are pre-trained on differ-
ent datasets/tasks and, if possible and
necessary, they are further fine-tuned
on the target task/dataset in advance.

• We introduce an extended version
of the benchmark material dataset
(namely, FMD [1]), called EFMD which
is ten times larger than the FMD
dataset. The images of EFMD are se-
lected according to surface properties
of objects observed in the images that
are similar to that of FMD. By the em-
ployment of EFMD for transfer learn-
ing, we achieve 84.0%± 1.8% accuracy
on FMD, which is close to human per-
formance (84.9%).

METHODOLOGY

Pre-trained model

(1)
(2)

Finetune the 
model on FMD

O-CNN

M-CNN

(3)
(4)

Finetune the model 
on EFMD and FMD

O-CNN
M-CNN

SVM

Feature 
selection

SVM (8)

(7)

Feature 
selection

4096-d feature vector

SVM (5)

SVM (6)

O-CNN

M-CNN

O-CNN

M-CNN

Freeze the 
former 9 layers

Update the 
later 7 layers

Freeze the 
former 9 layers

Update the later 
7 layers

4096-d feature vector

FEATURE SELECTION
Input:

- {Φn}Nn=1: A set of representations each of which
is learned using a CNN obtained using a dataset Dn.

- Db = {(I(i), Y (i))}Mb
i=1: A dataset of images that

will be used for inference of representations.
- T : The number of integrated features.
- K: The number of samples that have maximal ac-

tivation values for each feature.
Output:

- S: A set of integrated features.
Initialization:

- For each (I, Y ) ∈ Db, extract features using a
representation Φn(·) such that xn = Φn(I), ∀n =
1, 2, . . . , N .

- Concatenate xn, ∀n and construct xc = [xn]Nn=1.
- Define C = {(xi

c, Y
i)}Mb

i=1, and set equal weight
wi = 1 to each sample belonging to C.

- For each individual feature of xc, define the sets
F = {xc,j ∈ xc}|xc|

j=1 , and S = ∅.
for j ← 1 to |F| do

Construct K samples that have maximal feature
values on xc,j .
Compute class entropy on the set of topK samples.
end

for t← 1 to T do
Normalize the sample weights.
Select the feature that minimizes the weighted class
entropy.
Penalize the samples the top K samples of the inte-
grated feature.
end
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EXPERIMENTAL ANALYSES AND RESULTS
• Performance (accuracy) comparison for different tasks. M: Material features learned using MINC. O: Object

features learned using ILSVRC2012. MO: Concatenated material and object features (xc ∈ F ). SMO: Features
integrated using the proposed method (xc ∈ S).

Task M (%) O (%) MO (%) SMO (%)
FMD 80.4± 1.9 79.6± 2.1 79.1± 2.5 82.3± 1.7

FMD-2 82.5± 2.0 82.9± 1.6 83.9± 1.8 84.0± 1.8
EFMD 88.7± 0.2 88.8± 0.3 89.7± 0.13 89.7± 0.16

MINC-val 82.45 [2] 68.17 83.48 83.93
MINC-test 82.19 [2] 68.04 83.12 83.60

• Average entropy values of distributions of detections of concatenated and integrated features (MO and SMO).
In addition, we provide a diversity analysis of decisions of classifiers employed on individual feature sets (O
and M ), where ↓ (↑) indicates that the smaller (larger) the measurement, the larger the diversity.

Diversity Measures FMD FMD-2 EFMD

MO (ĤF ) 2.40 2.29 2.21
SMO (ĤS ) 2.19 2.08 1.99

κ (↓) 0.6471 0.7103 0.7116
Q Statistics (↓) 0.9860 0.9944 0.9996

Kohavi-Wolpert Variance (↑) 0.0070 0.0043 0.0002
Disagreement (↑) 0.0279 0.0172 0.0008

Generalized Diversity (↑) 0.3383 0.2892 0.2795

• Analysis of classification performance for (left) different number of Top-K samples, and (right) different num-
ber (T ) of integrated features on FMD.
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• Comparison of number of object and material features belonging to the set of selected features. We show the
number of selected object and material features in FMD, FMD2, EFMD, and MINC (from left to right).
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