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•  We study how representations learned for object recognition can 

be used for material recognition.

•  We compare our CNN models with human vision systems in terms 
of recognition accuracy of material category using natural images 
and their deformed versions. 
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Motivation •  Despite the recent success in the 
application of convolutional neural 
network(CNNs) to object category 
recognition, there are many open 
questions regarding material 
category recognition, i.e., 
recognizing material of an object 
from its single image. In this study, 
we analyze and explore how to 
utilize CNN features learned  for 
object recognition for material 
recognition.
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•  Toward this end, we conducted the 
following two experiments:


     (i) Transfer Learning:
           We first learn the object features using
           a CNN and then transfer the learned 
           representations for material recognition 
           task. 
  
     (ii) Feature Selection and Integration: 
           We learn object features and material 
           features separately using two different 
           CNNs. Then, we select and integrate 
           these features in order to recognize 
           material category as accurately as 
           possible.

     (1) Accuracy of the above two methods 
           on material category recognition
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Approach & Results
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VGG-FC VGG-FV VGG-FC+FV

VGG16 (15)70.3%±1.8 (14)73.5%±2.0 (13)76.6%±1.9

VGG19 77.4%±1.8 79.8%±1.8 82.4%±1.5
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•  CNNs trained in an end-to-end, transfer learning 
setting performs very well, especially when they are 
trained on a large training dataset.

•  Our method proposed for selection/integration of 
material and object features learned by CNNs is also 
effective, particularly when a small training dataset 
is used.

Results:
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•  Humans perform better than 
CNNs in material recognition, 
probably because they use 
global information more 
effectively.

•  CNNs are better at utilizing 
more local information to 
recognize materials.

Conclusion 

 (2) Comparison of human vision and 
       CNNs for material recognition using 
       natural images and their deformed
       versions.

•  We report the following two results:


