
• Neural responses in the primate ITC measured by ECoG were predicted by CNN 
features in a frequency-specific manner.

• Lower-frequency (theta) activities were better predicted by CNN features from 
middle or higher layers, whereas higher-frequency (low gamma) activities were 
predicted equally well from almost all the layers.

• Lower-frequency activities were most well predicted at 300-400ms after stimulus 
onset, whereas higher-frequency activities were at 50-150ms after stimulus onset.

• Visual representations estimated by the best encoding model of each frequency 
band indicated frequency-specific representations of visual attributes.
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Encoding frequency-band specific responses from image features

• Encoding ECoG features from CNN 
features by ridge regression 
(regularized linear regression)

• An encoding model is specified by one 
ECoG electrode, time window, 
frequency, and CNN layer.

• We first optimized each model with 
training set, and then evaluated each 
model’s prediction accuracy with test 
set.

• Each model's prediction accuracy was 
evaluated as Pearson correlation 
between predicted and true 
responses.
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Correspondence between the representations of convolutional neural networks and
the activities in inferior temporal cortex measured by electrocorticogaphy
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Diverse image features from deep convolutional neural networks
• Deep convolutional neural networks 

(CNNs) have achieved nearly human-level 
performance in various computer vision 
tasks.

Evolution of internal representations in CNNs [3]

• Deep convolutional neural networks (CNNs) 
appear to be the most plausible computational 
models of visual object recognition in the 
brain. CNNs have achieved nearly human-level 
performance in various computer vision tasks. 
Moreover, recent studies indicate that internal 
representations of CNNs are more similar to 
neural responses than other models of the visual 
cortex.

Deep convolutional neural networks  
(AlexNet [1])

1. Do predictions of ECoG responses from CNN features have specificity in 
the frequency domain?

2. How are frequency-specific prediction modulated along CNN layers and 
time?

3. What visual properties do the encoding models explain?

• Electrocortocography (ECoG) enables us to record 
local field potentials (LFPs) with high 
spatiotemporal resolution. LFPs in various 
frequency bands may contribute to neural 
representations at mesoscale, complementary to 
neuronal firing [2]. In the primate visual cortex, 
specific frequency bands subserve feedforward or 
feedback processing. However, it has been 
unclear what kind of visual information such 
frequency-specific activities represent.

Recording neural responses in the primate inferior temporal cortex
• We recorded cortical potentials of 128 

channel electrocorticogaphy (ECoG) 
covering from macaque posterior ITC to 
anterior ITC.

• We computed the amplitude of each 
frequency (1-500 Hz) by complex Morlet 
wavelet convolution.

• We downsampled the amplitude for each 
time window (20 ms), and then conducted 
trial averaging.

Image set
• Total 12000 natural images (building, body part, face, foliage, fruit, fur, glass, insect, 

leather, metal, paper, tool)

Specificity of prediction accuracy in the frequency domain

Visual representations of each frequency-band estimated by encoding models
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An example: prediction from conv5_1 layer to one electrode and time window
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• Higher layers in CNNs have higher-level, more abstract and spatially invariant 
representations [3]. 

• We used a pretrained model of VGGNet-16 [4], which has 13 convolution layers.
• We extracted outputs at each convolution layer using the same image set.

Comparison between each frequency
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