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Abstract

This paper examines numerical algorithms for factoriza-
tion of a low-rank matrix with missing components. We first
propose a new method that incorporates a damping fac-
tor into the Wiberg method to solve the problem. The new
method is characterized by the way it constrains the ambi-
guity of the matrix factorization, which helps improve both
the global convergence ability and the local convergence
speed. We then present experimental comparisons with the
latest methods used to solve the problem. No comprehen-
sive comparison of the methods that have been proposed
recently has yet been reported in literature. In our exper-
iments, we prioritize the assessment of the global conver-
gence performance of each method, that is, how often and
how fast the method can reach the global optimum start-
ing from random initial values. Our conclusion is that top
performance is achieved by a group of methods based on
Newton-family minimization with damping factor that re-
duce the problem by eliminating either of the two factored
matrices. Our method, which belongs to this group, consis-
tently shows a 100% global convergence rate for different
types of affine structure from motion data with a very high
population of missing components.

1. Introduction
The problem of factorizing a matrix Ywith missing com-

ponents into the product of two smaller matrices U and V as

Y→ UV>, (1)

is commonly encountered in several fields of science. In the
field of computer vision, it is seen in SfM (structure from
motion) and in the photometric analysis of multiple images
that are taken under different illumination conditions etc.
The problem can be stated as follows: Letting Y be an m× n
matrix that is ideally (i.e., without any noise) of rank r, we
wish to obtain two factors explaining Y, an m × r matrix U
and an n × r matrix V,

A standard formulation of the problem is to determine U
and V while minimizing the following L2 norm error with

respect to the existing components:

f (U, V) = ‖W � (Y − UV>)‖2F , (2)

where W is an indicator matrix of the same size as Y such
that wi j = 1 if the component yi j of Y exists and wi j = 0
otherwise (i = 1, . . . ,m, j = 1, . . . , n); � represents the
component-wise product of the matrices. Although norms
other than L2 can also be used depending on the purpose,
we consider only the L2 norm here. (Please refer to [4] for
a recently proposed method for the L1 norm as well as a
survey on related work.)

If Y does not have missing components, the minimiza-
tion (2) can be easily solved. If Y has missing components,
it requires iterative computation, for which global conver-
gence is not generally guaranteed. In the field of computer
vision, many methods (e.g., [1, 9, 5, 13, 11, 3, 15, 10]) have
been proposed for this problem since Shum et al.[12] in-
troduced the study of Wiberg [14]. These methods can be
classified into two types; one involving global optimization
([1, 11, 3, 10, 15] and many earlier ones) and the other
involving sequential repetition of local optimization (e.g.,
[6, 9, 5, 13]). In this paper, we consider only the former
type approach.

This paper has two purposes. The first is to present a
new numerical method for Eq.(2), incorporating a damping
factor into the Wiberg method in an effective manner. The
new method is characterized by its way of constraining the
ambiguity of solutions. There is an infinite number of solu-
tions to Eq.(2) reflecting the ambiguity of the factorization.
That is, for any nonsingular 3 × 3 matrix A, it holds that

UV> = UA−1AV> = (UA−1)(AV>) = U′V′>. (3)

As will be shown in the experimental results, convergence
performance seems to greatly be affected by how to deal
with this ambiguity. Our method constrains the ambiguity
in such a way that the incorporated damping factor behaves
ideally; that is, the method improves the global convergence
ability without sacrificing the local convergence speed.

The second purpose is to experimentally compare the lat-
est methods including our method for solving the problem.
Recently, several methods have been proposed in the litera-
ture [11, 3, 10, 15]. Although each study includes the com-



parison of its proposed method against the existing meth-
ods, there are some problems with the comparisons; for ex-
ample, not all existing methods are taken into account or the
experimental conditions are not consistent with other stud-
ies. These problems hinder the accurate evaluation of the
performances of these methods. In this study, we compare
these methods through several experiments conducted un-
der the same conditions.

In the experiments, we prioritize the investigation of the
global convergence ability, which can be evaluated by con-
sidering how often the method reaches the global minimum
starting from random initial values. The reason for this pri-
oritization is our empirical finding that particularly for SfM
data, some methods can achieve a success rate of nearly
100% even when a large portion of the data is missing.

In [1], Buchanan and Fitzgibbons evaluated a large num-
ber of algorithms that had been proposed till then and pro-
posed (the use of) the damped Newton method. The con-
clusion of their study is that the damped Newton method
is superior to other methods. Moreover, it is a benchmark
method that has been cited in all subsequent studies. Thus,
in this paper, we evaluate the performance of the six meth-
ods that have been proposed since then, namely, the damped
Newton method [1], Chen’s LM S/LM M [3], SALS of
Zhao-Zhang [15], MFLRSDP of Mitra et al. [10], and our
method, which we call the damped Wiberg method.

2. Revisiting the Wiberg method
The Wiberg method is a method that eliminates either U

or V from the problem by using the (bi)linearity of f (U, V)
and applies the Gauss-Newton method to the reduced prob-
lem. When U is chosen for the elimination, we compute the
minimizer U = Û(V) of f (U, V) for a fixed V and substitute it
in f (U, V), yielding

g(V) ≡ min
U

f (U, V) = f (Û(V), V). (4)

Then, we minimize g(V) with respect to V.
We use the following notations in what follows. Let U =

[u1, . . . ,um]> and V = [v1, . . . , vn]>, where ui and v j are
both r-vectors, and denote their vectorized versions as u =
[u>1 , . . . ,u

>
m]> and v = [v>1 , . . . , v

>
n ]>. Additionally, let y be

the p−vector that contains the existing components of Y in
a row-first order (p is the number of existing components).
Thus, the equation f (U, V) = f (u, v) can be rewritten as

f (u, v) = ‖y − Fu‖2 = ‖y − Gv‖2, (5)

where F is a p ×mr matrix containing only v1, . . . , vn and G
is a p × nr matrix containing only u1, . . . ,um; they have the
following structure:

F =


F1
F2

. . .
Fm

 , G =


G1
G2
...
Gm

 , (6)

where the submatrices Fi and Gi (i = 1, . . . ,m) are further
defined as follows. We define an index set S i ≡ { j |wi j , 0}
and denote each of its elements as αk (k = 1, . . . , |S i|), such
that 1 ≤ α1 < · · · < α|S i | ≤ n. Fi is a |S i| × r dense matrix
whose k-th row is given by v>αk

; Gi is a sparse |S i|×nr matrix
whose k-th row vector stores only u>i in indices [(αk − 1)r +
1 : αkr].

Using these notations, the computation of the Gauss-
Newton step minimizing g(v)(= g(V)) is simplified to alter-
nately perform the following two minimization problems:

u← argmin
u

f (u, v), (7a)

v← v + δv, where δv = argmin
δv
‖QFGδv − QFy‖2, (7b)

where
QF = I − F(F>F)−1F>. (8)

Note that the factorization ambiguity of Eq.(3) appears as
the fact that QFG in (7b) is rank-deficient; it is shown in [11]
that its rank is deficient by r2.

The elimination of the parameter (i.e., U or u in the
above derivation) has two advantages, one theoretical and
the other empirical. The theoretical one is that the problem
size decreases and the computational efficiency increases.
This is more pronounced when the height m and the width
n of Y differ significantly; the elimination of the longer pa-
rameter decreases the problem size. The other empirical
advantage is that the elimination of the parameter boosts
global convergence ability, as will be shown in the results.

It should be noted that the Wiberg approach is very sim-
ilar to a well known technique used in bundle adjustment
of SfM for eliminating either the three-dimensional coordi-
nates or the camera poses in the computation of the Newton
step. The elimination is done by using the Schur comple-
ment of the Hessian matrix. In fact, Eqs.(7) can also be
derived by computing the Schur complement for the Gauss-
Newton approximation of the Hessian matrix, i.e., A ≡ J>J,
where J = [F, G]. The prominent deviation of our study
from this technique of bundle adjustment is that by exploit-
ing the linearity of the problem, we aim to improve the
global convergence ability, which has thus far not been con-
sidered in the context of bundle adjustment.

In the next section, we consider incorporating a damp-
ing factor, which is similar to the one used in the damped
Newton method [1] and Chen’s LM S/LM M [3], to the
Wiberg method. In [11], we pointed out that the standard
Wiberg method (without a damping factor) is quite effective
for problems in the field of computer vision, particularly as
compared with the method of alternated least squares (ALS)
and its variants, which were popular in those days. How-
ever, there remains room for improvement. Although the
standard Wiberg method shows fairly good performances
for easy data with low missing rate, its performance dete-
riorates quickly as missing rate increases and data become
more difficult. Improving this convergence performance is
the motivation of the next section.



3. Damped Wiberg method
3.1. Incorporating a damping factor

In each iteration of the Wiberg method given in Eqs.(7),
Eq.(7b) is dominant in terms of computational cost. The
matrix on the left hand side is p × nr. In [3], it is argued
that this matrix becomes too large for real problems, and
thus, the Wiberg method is omitted in the comparative ex-
periments. However, this argument is invalid, because con-
verting (7b) to the normal equation reduces the problem to
a size comparable to that in the methods proposed in [3].

By multiplying (QFG)> with the terms inside the norm in
Eq.(7b), we obtain the identical normal equation as

G>QFGδv = G>QFy, (9)

where we use QF = Q>F and Q2
F = QF. Note that QFG is rank-

deficit, as mentioned earlier, and so is G>QFG; thus, δv can-
not be uniquely determined. The simplest solution is choos-
ing δv minimizing ‖δv‖2. Since we know that G>QFG has the
rank nr − r2 [11], this δv can be computed in a numerically
stable manner. The step δv thus determined gives a Gauss-
Newton step.

Now, we consider the incorporation of a damping factor
in Eq.(9) to improve the global convergence performance.
A straightforward way of doing this is to add λI in Eq.(9),
yielding

(G>QFG + λI)δv = G>QFy. (10)

We then control λ to ensure that the cost g(V) decreases in
each iteration, expecting that the method possesses both the
good global convergence ability of gradient descent meth-
ods and the fast local convergence speed of the Newton
method. If λ is controlled appropriately, the additive term
λI guarantees that the matrix on the left hand side is posi-
tive definite, and thus, δv is uniquely determined. However,
adding the damping factor as in Eq.(10) is inadvisable be-
cause the matrix on the left hand side becomes nearly sin-
gular as λ → 0. This can cause numerical instability when
λ does approach zero or lower the local convergence speed
if λ is controlled so as not to approach zero.

3.2. Constraining the ambiguity
To cope with this difficulty, we consider the fact that the

null space of G>QFG can be expressed in an explicit form.

Proposition 1. The null space of G>QFG coincides with the
column space of an nr × r2 matrix N defined as

N =
[
N>1 , N

>
2 , . . . , N

>
n

]>
, (11)

where N j is an r × r2 block diagonal matrix having r sub-
blocks v>j :

N j =


v>j

. . .
v>j

 , j = 1, . . . , n. (12)

Proof. Similar to N j, let Mi be an r×r2 block diagonal matrix
having r subblocks ui and also let M = [M>1 , . . . , M

>
m]>. It is

easy to prove that FM = GN, and thus,

GQFGN = GQFFM = O. (13)

�

Although this proof is almost identical to the proof of
the proposition presented in [11] to show that QFG has rank
nr − r2, we are concerned with the expression (11) itself.

Proposition 2. Among the solutions to Eq.(9), the one min-
imizing ‖δv‖2 satisfies

N>δv = 0, (14)

and vice versa.

Proof. We denote the orthogonal decomposition of a so-
lution δv to Eq.(9) with respect to the column space of N
as δv = δv⊥ + δv∗, where δv⊥ is orthogonal to the col-
umn space. Since ‖δv‖2 = ‖δv⊥‖2 + ‖δv∗‖2, the solution
that minimizes ‖δv‖2 is given as δv = δv⊥. This satisfies
N>δv = N>δv⊥ = 0. The proof of the converse is omit-
ted. �

The same solution minimizing ‖δv‖2 is also obtained by
solving the simultaneous equations (9) and (14). Using the
fact that the vector on the left hand side of Eq.(9) is also
orthogonal to the column space of N, the two equations can
be converted into a single equation:

(G>QFG + NN>)δv = G>QFy. (15)

It is evident that the matrix on the left hand side is of full
rank. We incorporate the damping factor λI here:

(G>QFG + NN> + λI)δv = G>QFy. (16)

Now, the matrix on the left hand side remains of full rank
even when λ approaches 0. We use this equation to deter-
mine the update δv.

Another approach involves making an arbitrary nr×(nr−
r2) matrix N⊥ whose column space is orthogonal to that of
N and then solving the following equation for δw:

G>QFGN⊥δw = G>QFy. (17)

Then, the update δv is obtained by δv = N⊥δw. However,
this method requires the generation of N⊥ and its multipli-
cation to the existing matrices. These operations incur over-
head cost; therefore Eq.(16) is adopted.

The overall algorithm is summarized as Algorithm 1.

3.3. Other remarks on efficient computation
In each iteration, the minimization (7a) and the compu-

tation of the matrix on the left hand side of Eq.(17) require a
certain amount of computational time. It is essential to use
the sparseness of F and G.



Algorithm 1 Damped Wiberg method with a constraint on
the factorization ambiguity

1. Set some small value (e.g., 0.01) to λ.
2. Solve the minimization (7a) to determine u.
3. Check for convergence. Exit if converged. Otherwise,

go to Step 4.
4. Solve Eq.(16) for δv by performing the Cholesky de-

composition followed by back substitution.
5. If the value of f (u, v + δv) increases from the previous

step, set λ← 10λ and go to Step 4. Otherwise, update
v← v + δv and λ← 0.1λ and go to Step 2.

Since F is a block diagonal matrix, its QR decomposition

F = FQFR (18)

can be efficiently obtained by computing the QR decompo-
sition of each subblock matrix; FQ and FR have the same
block structure as F. Once this decomposition is obtained,
it can be used to convert the minimization (7a) into

FRu = F>Qy, (19)

and then, u can be efficiently computed by back substitu-
tion. FQ can also be used to efficiently compute the matrix
G>QFG in Eq.(16) as follows.

G>QFG = G>(I − F(F>F)−1F>)G

= G>G − (F>QG)
>(F>QG). (20)

The sparseness of the matrices should be used in the multi-
plications.

The first matrix G>QFG in Eq.(16) can be sparse or some-
times very sparse. The second matrix NN> is also a sparse
matrix with (r − 1)/r sparsity. However, the non-zero com-
ponents are distributed over the entire matrix; thus, using
a dense Cholesky decomposition to solve Eq.(16) is faster
than using a sparse Cholesky decomposition in the experi-
ments shown below. A more efficient solution of the equa-
tion is a topic to be considered in future research.

4. Experimental results
4.1. Compared methods

We first summarize the six methods compared in the ex-
periments.

Damped Newton (DN) method proposed by Buchanan et
al. This method [1] minimizes the following cost function
that regularizes f with respect to U and V.

fR(U, V) = ‖W � (Y − UV>)‖2F + µ1‖U‖
2
F + µ2‖V‖

2
F . (21)

The regularization terms constrain the factorization ambi-
guity (3). The minimization is performed using the stan-
dard Newton algorithm that includes a damping factor. One

drawback of the DN method is that the number of param-
eters is larger than the methods below; the Hessian matrix
is (m + n) × (m + n). In DN, µ1 and µ2 are required to
be specified. In our experiments, we used the Buchanan
et al.’s MATLAB implementation, which is publicly avail-
able1. The implementation is partially optimized using a
MEX file.

Chen’s LM S and LM M LM S and LM M [3] are both
damped Newton methods similar to DN, but they solve the
reduced problem in a similar manner to the Wiberg method.
Although the derivation is different, the parameter elimina-
tion step is expected to be essentially the same as the Wiberg
method, since there is no (effective) step other than Eq.(4) to
do so. LM S does not constrain the factorization ambiguity
at all, whereas LM M constrains it by confining the search
space to the Grassmann manifold, i.e., {V | V>V = I} [8]. Be-
cause of the lack of a constraint, LM S has the same prob-
lem as the updating scheme of Eq.(10); the linear equation
for the Newton step becomes indeterminate if λ approaches
0. The prominent differences between LM S/LM M and
our method are as follows: LM S and LM M compute
the full Hessian matrix whereas our method computes its
Gauss-Newton approximation, and LM M and our method
constrain the factorization ambiguity in a different manner.
We used the Chen’s MATLAB implementation, which is
publicly available2.

Damped Wiberg (DW) method We refer to the algo-
rithm presented in the previous section the damped Wiberg
(DW) method. We implement it in the native MATLAB
code (i.e., no optimized MEX file) and use it in the experi-
ments3.

Matrix factorization using low-rank semidefinite pro-
gram (MFLRSDP) based method Recently, Mitra et al.
showed [10] that the matrix factorization problem can be
formulated as a low-rank semidefinite program (LRSDP)
[2]. The problem is then solved using the augmented La-
grangian method, a standard method for LRSDP, which uses
the BFGS (Broyden-Fletcher-Goldfarb-Shanno) method,
one of the quasi Newton methods, for the computation. This
matrix factorization method, called the MFLRSDP, mini-
mizes the regularized cost function fR(U, V) of Eq.(21), and
therefore, it requires the specification of µ1 and µ2. Note
that in [10], MFLRSDP is not compared with any Newton-
family methods other than DN. In the experiments below,
we used the Mitra et al.’s MATLAB implementation, which
is publicly available4.

Successively alternate least square (SALS) In [15],
Zhao and Zhang presented a method that assumes a “weak”

1http://www.robots.ox.ac.uk/ amb/
2http://sist.sysu.edu.cn/ chenpei/
3Available from http://www.fractal.is.tohoku.ac.jp/okatani/DW.html.
4http://ttic.uchicago.edu/ ssameer/#code



prior knowledge that all components of Y including the
missing ones lie within a certain range, i.e., a ≤ yi j ≤ b. The
method, called SALS, iterates the following procedures: for
a given reconstruction X of Y, U and V are optimized by al-
ternated least squares (ALS) (e.g., [1]), so that UV> will ap-
proach X, followed by the reconstruction of Y by computing
X = UV> and imposing the inequality constraint to it.

Although there can be a substantial amount of prior
knowledge that is potentially effective for the matrix fac-
torization, we avoid considering it in this paper because it
is problem-specific and, moreover, optimization with many
constraints often shows only a limited global convergence.
Nevertheless, we include SALS for performance compari-
son, since the inequality constraint may be generally avail-
able owing to its weakness; the results shown in [15] are
promising. Besides [a, b], SALS further requires the speci-
fication of several control parameters, K, λ, and δ: Refer to
[15] for details.

It should be noted that in [15], SALS has been compared
to LM M and LM S, but there is no experimental result us-
ing real data that shows its global convergence ability start-
ing from random initial values. We used our MATLAB im-
plementation of SALS in the experiments.

4.2. Results for real data
We first conducted experiments employing the real

data used in [1]; these data can be downloaded from
http://www.robots.ox.ac.uk/ amb/. Their specifications are
shown in Tbl.1.

Table 1. The details of three real data.
dinosaur giraffe face

Matrix size 319 × 72 240 × 166 2596 × 20
Rank 4 6 4
Missing rate 76.9% 30.2% 35.1%

We run each method for these data starting from random
initial values. The initial value of V is generated according
to a normal distribution N(0, 1); that is, V is initialized by a
MATLAB code randn(n,r). The least squares solution to
(7a) for the initialized V is used in the method requiring the
initial value of U. For each run, the identical initial value of
V thus generated is supplied to all the methods. We also use
an identical termination condition if possible. For methods
other than MFLRSDP, we terminate the computation either
when | fk−1 − fk | < 10−9 fk is satisfied ( fk is the value of f
at the k-th iteration), or when the iteration count exceeds a
predetermined number. For MFLRSDP, we follow [10] and
set the upper limit of execution time at ten minutes for di-
nosaur and face and at one hour for giraffe. A few methods
require the specifications of other control parameters, which
were obtained considering the recommendations in the lit-
erature. For DN and MFLRSDP, we set the regularization
parameters µ1 = µ2 = 10−3. For SALS, we set the range
[a, b] to coincide with the minimum and maximum values
of the existing components; we set K = 60, λ = 0.01, and
δ = (b − a)/100.

Figure 1 shows the results. We performed 100 runs for
both dinosaur and face and 25 runs for giraffe. DN was not
performed for face, since it was very slow. For each run,
we recorded the residual error, iteration counts, and elapsed
CPU time measured by MATLAB. The residual error is de-
fined as

RMS =

√
‖W � (Y − UV>)‖2F/p, (22)

where p is the number of existing components. All the ex-
periments were conducted on a PC with a 3.16 GHz Xeon
CPU, 32 GB memory, and 64-bit Windows OS running 64-
bit MATLAB 7.9.0.529/R2009b.

The histograms in the left column of Fig.1 show the
RMS errors. From these, we can evaluate the global con-
vergence ability of each method starting from random ini-
tial values, i.e., the odds of finding the global minimum.
It is observed that DW is the best; its convergence to the
global minimum is nearly 100% in the case of dinosaur and
giraffe. The second and third best are LM M and LM S, re-
spectively; they are inferior to DW in the case of dinosaur
but are comparable to DW in the case of the other two data.
DN shows a moderate performance in the case of giraffe
but only shows a poor performance in the case of dinosaur.
MFLRSDP is better than DN in the case of dinosaur, as re-
ported in [10], but its overall performance is considerably
inferior to the top three methods. SALS shows similarly in-
ferior performances but shows a moderate performance par-
ticularly in the case of face. This may be because the prior
knowledge assumed in SALS fits the nature of the problem.

The histograms in the middle column of Fig.1 show the
number of iterations carried out by each algorithm until con-
vergence. From these, we can compare the convergence
speed of the Newton-family methods (i.e., DN, LM M,
LM S, and DW). MFLRSDP and SALS have iterative struc-
tures that are different from these methods, and thus, a direct
comparison is not suitable. (Hence, MFLRSDP is omitted
in the figure.) It is observed that DW shows superior per-
formance again; it significantly outperforms other methods
in the case of dinosaur and is the best in the case of giraffe
and nearly the best for face. The second and the third best
are, again, LM M and LM S, respectively. It is notewor-
thy that LM S sometimes took a larger number of iterations
than LM M; this symptom may be attributable to the lack
of a constraint on the factorization ambiguity in LM S.

The histograms in the right column of Fig.1 show the
elapsed time taken by each method. Although elapsed time
might not be a good measure to estimate the theoretical ef-
ficiency of algorithms, it can still provide rough estimates.
It is seen that DW significantly outperforms other methods;
on average, it is 2 to 100 times faster than LM M. SALS and
MFLRSDP occasionally terminate in a shorter time than
LM M; however, these instances are ignored because the
converged solutions are not the global minimum.

4.3. Results for synthetic data
We also conducted experiments using synthetic data to

examine how the performances of the methods are affected
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Figure 1. Results for real data. From upper to lower row: dinosaur, giraffe, and face. From left to right: cumulative histograms of residual
errors, iteration counts used until convergence, and elapsed CPU time. Note that the figures are in color.

by the nature of the data, such as the population of missing
components.

To generate data, we assume two scenarios of SfM. In
the first scenario, an orthographic camera moves around M
points in space and captures n images so that a sequence
similar to dinosaur is obtained. Henceforth, we refer to
the data thus generated as rotation. In the second scenario,
the same camera undergoes a translational move along the
y axis, in front of M points, and captures n images. Hence-
forth, we refer to this data as translation. The points are
randomly generated as per uniform distributions with the
xyz range [−100, 100] × [−100, 100] × [0, 200] for rotation
and [−100, 100]× [0, 720]× [0, 100] for translation. Setting
the image size to 300× 300, we add Gaussian random noise
with standard deviation σ ∈ [0.5 : 3.0] to the image points.
For both data, Y has the size 2M × n.

We also generate the indicator W of the existing compo-
nents for Y thus obtained. We consider two types of patterns
for W. One is a random pattern which is randomly generated
while fixing the number of 1’s in each row of W. The other
is a band-diagonal pattern, which can occur in real SfM
problems, as in dinosaur. We denote the number of exist-
ing components per row by ω in the following discussions.
For each pattern, the effects of ω on the convergence were
examined by varying ω.

We first set the matrix size as 200 × 60. Fig.2 shows
the results of the rotation/band-diagonal sequence over 20
runs. The results for other sequences are omitted here, since
they are similar. The upper and lower rows show the results
whenσ = 0.5 and 3.0, respectively. results display the same
tendency as the results obtained for real data. DW, LM M,
and LM S perform significantly better than the others, and
DW performs the best among the three. This trend is almost
the same for different noise strengths, although it can be
seen that the superiority of DW to LM M/LM S slightly
increases with the increase in noise. It is also noted that
DW consistently achieves 100% global convergence rate for
from around ω = 10 (83.3% missing); however, it takes less
computational time as compared to other methods.

The performance of these methods for matrices of large
size was examined by experiments using 500 × 500 matri-
ces. In [10], it is reported that DN is very slow for matri-
ces of this size; therefore, MFLRSDP is compared against
methods other than DN, such as Optspace [7], with the
conclusion that MFLRSDP outperforms them. In fact, our
experiments confirm that DN, LM S, and LM M require
a significant amount of computational time. Because the
speed of DW is comparable to MFLRSDP, we compared
DW and MFLRSDP using the 500 × 500 matrices synthe-
sized as above. We choose σ = 0.5. For MFLRSDP, we
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Figure 2. Results for synthetic data (matrix size 200 × 60). Upper row: σ = 0.5. Lower row: σ = 3.0. From left to right: the cumulative
histograms of the RMS residual error for ω = 10 out of 60 (i.e., 83.3% missing), the number of runs for which each method converges to
the global minimum versus the number of the existing components per row, ω, and the elapsed time versus ω (the bars indicate the average,
maximum, and minimum). Note that the figures are in color.

set µ1 = µ2 = 10−3 and the upper limit of execution time
to 1500 seconds for the random patterns and 3500 seconds
for the band-diagonal patterns. By varying the number of
existing components per row, ω, from 10 to 80 out of 500,
we run both methods starting from random initial values as
in the previous experiments.

Fig.3 shows the results. The results in the upper row (the
rotation/random-pattern sequence) suggest that DW and
MFLRSDP achieve similar performances, although DW is
slightly better. The results in the middle row (rotation/band-
diagonal) and lower row (translation/band-diagonal) show
that DW continues to perform well although some perfor-
mance deterioration can be observed, whereas MFLRSDP
shows very poor performance. The drastic performance dif-
ference seen in case of MFLRSDP is attributable to the pat-
tern of existing/missing components in Y; MFLRSDP per-
forms well in the case of random patterns but performs
poorly in the case of the band-diagonal patterns. Note
that these results agree with the results shown in [10], in
which only randomly generated patterns are used for W. It
is seen that the performance of DW also deteriorates for
the band-diagonal patterns; the global convergence rate be-
comes 100% for around ω = 22 (95.6% missing) in the case
of the random patterns and for around ω = 50 (90.0% miss-
ing) in the case of the band-diagonal patterns, respectively.
These observations imply that the band-diagonal patterns
are more difficult than the random patterns.

5. Summary and discussion
We have studied the problem of factorizing a low-rank

matrix with missing components into the product of two
smaller matrices. We present a numerical method called the

damped Wiberg (DW) method for this problem; this incor-
porates a damping factor into the Wiberg method. We then
show the experimental comparisons of the latest six meth-
ods, including our method, by using synthetic as well as real
data.

In all the experiments, the best performance is achieved
by the group of Newton-family methods that have a damp-
ing factor and which reduce the problem by eliminating ei-
ther of the two matrices, i.e., DW and Chen’s LM M and
LM S. On the other hand, the method retaining both matri-
ces as parameters, i.e., the damped Newton (DN) method,
shows a significantly inferior performance as compared to
these methods. Besides the fact that DN does not eliminate
parameters, it also differs from the three methods in that it
uses regularization. However, the regularization is not con-
sidered to be the main reason for the limited performance of
DN, since we experimentally confirmed that if we invalidate
the regularization terms by setting µ1 = µ2 = 0, the results
did not improve. In this case, the factorization ambiguity
is left unconstrained, but the same applies to LM S, which
nevertheless shows fairly good performance. Considering
that DW, LM M, and LM S have several differences (e.g.,
different constraints on the factorization ambiguity and the
computation of the full Hessian or its Gauss-Newton ap-
proximation), it is natural to think that the significant dif-
ference in performance between these methods and DN is
attributable to whether or not the parameter is eliminated.
Thus, we conclude that the parameter elimination boosts
global convergence ability.

Among the three methods, DW is rated the best in terms
of both global convergence ability and convergence speed.
It is particularly observed for SfM problems that DW con-



ro
ta

tio
n/

ra
nd

om

0 1 2 3 4
0

2

4

6

8

10

12

14

16

18

20

rms [pixel]

C
u
m
u
l
a
t
i
v
e
 
h
i
s
t
o
g
r
a
m

 

 

DW

MFLRSDP

10 16 22 28 34
0

5

10

15

20

Existing entries (/500)

C
o
n
v
e
r
g
e
d
 
c
o
u
n
t

 DW

MFLRSDP

10 16 22 28 34
0

500

1000

1500

2000

Existing entries (/500)

T
i
m
e
 
[
s
e
c
]

 

DW

MFLRSDP

ro
ta

tio
n/

ba
nd
−

di
ag

on
al

0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

rms [pixel]

C
u
m
u
l
a
t
i
v
e
 
h
i
s
t
o
g
r
a
m

 

DW

MFLRSDP

20 30 40 50 60 70
0

5

10

15

20

Existing entries (/500)

C
o
n
v
e
r
g
e
d
 
c
o
u
n
t

 

DW

MFLRSDP

20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

3500

4000

Existing entries (/500)

T
i
m
e
 
[
s
e
c
]

 

DW

MFLRSDP

tr
an

sl
at

io
n/

ba
nd
−

di
ag

on
al

0 0.5 1 1.5 2
0

5

10

15

20

rms [pixel]

C
u
m
u
l
a
t
i
v
e
 
h
i
s
t
o
g
r
a
m

 

DW

MFLRSDP

20 30 40 50 60 70 80
0

5

10

15

20

Existing entries (/500)

C
o
n
v
e
r
g
e
d
 
c
o
u
n
t

 

DW

MFLRSDP

20 30 40 50 60 70 80
0

500

1000

1500

2000

2500

3000

3500

4000

Existing entries (/500)

T
i
m
e
 
[
s
e
c
]

 

DW

MFLRSDP

Figure 3. Results for synthetic data (matrix size 500×500). From upper to lower row: the results for rotation/random-pattern, rotation/band-
diagonal, and translation/band-diagonal sequences. From left to right column: cumulative histograms of the RMS residual error for a
selected ω (from upper to lower row, ω = 22, 40, 50), the number of runs for which the algorithm converges to the global minimum versus
ω, and the elapsed time versus ω (the bars indicate the average, maximum, and minimum). Note that the figures are in color.

verges to the global minimum even if the population of
missing components is very large; DW achieves a success
rate of 100% if the population of the missing components is
smaller than a certain number. Although more experiments
are required, we can say that the SfM problems are such that
the global minimum can be found with high probability, in-
dependent of initial values. They can be regarded as bundle
adjustment assuming an affine camera. Although the linear-
ity of the problem undoubtedly contributes to it, this empir-
ical finding is contrasted with the ordinary bundle adjust-
ment for perspective cameras, in which such global conver-
gence, or equivalently, the independence of initial values,
has never been an issue.
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