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Abstract

This paper is concerned with the inference of marginal
densities based on MRF models. The optimization algo-
rithms for continuous variables are only applicable to a lim-
ited number of problems, whereas those for discrete vari-
ables are versatile. Thus, it is quite common to convert
the continuous variables into discrete ones for the prob-
lems that ideally should be solved in the continuous do-
main, such as stereo matching and optical flow estima-
tion. In this paper, we show a novel formulation for this
continuous-discrete conversion. The key idea is to estimate
the marginal densities in the continuous domain by approx-
imating them with mixtures of rectangular densities. Based
on this formulation, we derive a mean field (MF) algorithm
and a belief propagation (BP) algorithm. These algorithms
can correctly handle the case where the variable space is
discretized in a non-uniform manner. By intentionally us-
ing such a non-uniform discretization, a higher balance be-
tween computational efficiency and accuracy of marginal
density estimates could be achieved. We present a method
for actually doing this, which dynamically discretizes the
variable space in a coarse-to-fine manner in the course of
the computation. Experimental results show the effective-
ness of our approach.

1. Introduction
Markov Random Fields (MRFs) have been used to solve

various types of problem in computer vision and image pro-

cessing, such as image restoration [5, 1], super-resolution

[10], stereo matching [7, 9], and optical flow estimation

[12]. These problems share the same formalization, in

which one optimizes the energy function consisting of the

data term of each site and the smoothness term of neighbor-

ing sites:

E(x) =
∑

i

fi(xi) +
∑

(i, j)∈E
fi j(xi, x j), (1)

where x = [x1, . . .]
�, and xi is the variable of site i.

There are basically two methods for inference using

MRF models, MAP (Maximum A Posteriori) inference and

MPM (Maximum Posterior Marginal) inference. Both are

built upon the Boltzmann distribution Q(x) ∝ exp (−E(x)).

MAP directly obtains the maximizer to Q(x) and uses it as

an estimate of x. MPM first computes the marginal density

of each variable xi; it then obtains its maximizer and uses it

as the estimate of xi [11, 2, 4].

In this paper, we consider the estimation of marginal

densities. Although MAP is in general computationally

easier to perform and thus MPM is unlikely to be the first

choice when both can be used, there is no other choice when

the marginal densities themselves are necessary, e.g., learn-

ing the parameters in CRF (Conditional Random Field)

models [3, 6]

The computation of the marginal densities is differently

formulated depending on whether the variable xi is con-

tinuous or discrete. There are two practical algorithms,

the belief propagation (BP) and the mean field (MF) al-

gorithms. Both iteratively estimate the marginal densities

by repeatedly exchanging information, or messages, among

the neighboring sites. In the case of continuous variables,

the marginal densities are represented by some parametric

density function and its parameters are iteratively updated

at each site. In the case of discrete variables, the marginal

densities are represented as discrete densities, and they are

iteratively updated at each site.

The former formulation for continuous variables can be

used only for a small class of problems, as there are only

a few choices for the parametric function representing the

marginal densities. In fact, for the BP algorithm, the Gaus-

sian function is practically an only choice. (This limitation

comes from the constraint that in the message updating step,

the densities before and after the update should be repre-

sented by the same parametric function.) For the MF algo-

rithm, this limitation is somewhat relaxed but it is in general

difficult to derive an iterative algorithm having good conver-

gence property.

On the other hand, the formulation for discrete variables

is free from such a limitation, and it can be used for a wide
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range of problem. Thus, it is used not only for the prob-

lems originally defined in discrete domain (e.g., multi-label

image segmentation) but also for those originally defined in

continuous domain. In the latter case, the continuous vari-

ables are discretized into discrete ones. For example, in

stereo matching and optical flow estimation, the site vari-

able is disparity and a flow vector, respectively, which are

both continuous; they are discretized and the energy func-

tion is then defined based on the resulsting discrete vari-

ables.

In this paper, we present a novel formulation for this

continuous-discrete conversion (i.e., that the problems that

should ideally be dealt with in continuous domain are

solved by discretization of the variables). In the conven-

tional formulation, the variables are first discretized and the

energy of Eq.(1) is then defined based on those discrete

variables. Then, the marginal densities defined in the dis-

crete domain are estimated using the discrete MF or BP

algorithm. On the other hand, our formulation starts with

the energy defined in the continuous domain. To make its

minimization feasible, we “discretize” the marginal density

of each site, or more rigorously, approximate the marginal

density with a discrete density. We then search for the

marginal densities that minimize the energy in the space of

the approximating discrete densities.

For the approximating density, we choose a mixture of

rectangular densities in this study. The center of each rect-

angular distribution corresponds to a discrete value in the

conventional formulation, and its height is the parameter to

be determined in the minimization. Based on this formula-

tion, we derive the MF and BP algorithms.

In our formulation, the rectangular functions in the mix-

ture are allowed to have arbitrary locations and sizes (as

long as any two of them are not overlapped in the variable

space), which provides a core practical value of our formu-

lation. In fact, when they are placed on a regular grid and

have the same size, the new MF and BP algorithms coin-

cide with the conventional ones, whereas otherwise the two

are different. To be specific, the updating terms in the new

MF and BP algorithms have additional terms as compared

with conventional ones; these additional terms are regarded

as compensating the non-uniform distribution of rectangu-

lar functions. Note that the conventional MF and BP algo-

rithms are independent of how the continuous variables are

discretized; as the energy is defined after the discretization,

differences in the discretization simply change the meaning

of the energy.

This flexibility with our formulation enables the follow-

ings:

• One can discretize the variable space in a non-uniform

manner (e.g., sampled densely in some region and

sparsely in others) to improve the estimation accuracy

of the marginal densities without increasing the com-

putational cost.

• One can deal with the case where the variable space is

non-Euclidean and is difficult to uniformly discretize,

e.g., spherical surface.

The former could be particularly effective for the variable

space of two or higher dimensions. For effective non-

uniform discretization, some prior knowledge could be used

if it is available.

In this paper, taking one step further, we present a

method that performs this non-uniform discretization dy-

namically in the course of the optimization. Our method

employs a coarse-to-fine strategy; starting with coarsely di-

vided blocks of the variable space, it recursively divides the

block of the largest mixture weight into subblocks. (Each

block is the support of a rectangular function in the mixture

density.) This block subdivision also requires dividing the

current marginal density estimates as well as the messages.

We also describe how to do this.

This paper is organized as follows. In Section 2, we de-

rive the new MF and BP algorithms that can deal with non-

uniformly discretized variable space. Section 3 presents a

method that dynamically discretizes the variable space in a

coarse-to-fine manner, which are to be used with the new

MF or BP algorithm. Section 4 shows the results of the

experiments conducted to examine the effectiveness of our

approach. Section 5 concludes this paper.

2. Algorithms for a non-uniformly discretized
variable space

In this section we derive the new MF and BP algorithms

that can deal with non-uniformly discretized variable space.

2.1. Minimization of the free energy

The conventional MF and BP algorithms for discrete and

continuous variables are all derived in the same variational

framework for the minimization of the free energy [13]. We

briefly summarize it here, as it will be used later to derive

the new algorithms

The joint density Q(x) of the variables x of all the sites

of the MRF is given by

Q(x) =
1

Z
exp(−E(x)), (2)

where Z is a normalizing factor called the partition func-

tion. The direct computation of the marginal densities based

on Eq.(2) is in general infeasible. Thus, in the variational

approach, a density P(x) that approximates Q(x) is intro-

duced. Then, restricting P to a particular class of densities

for which the marginal densities can be computed easily, P
that the best approximates Q is searched for.



To evaluate the accuracy of the approximation, the fol-

lowing KL divergence between P and Q is used:

D[P ‖Q] =
∑
x

P(x) ln
P(x)

Q(x)
. (3)

The substitution of Eq.(2) into Eq.(3) yields

D[P ‖Q] = 〈E〉P − S [P] + ln Z, (4)

where 〈E〉P =
∫

p(x)E(x)dx, the expectation of the energy

with respect to P, and S [P] = − ∫ p(x) ln p(x)dx is the en-

tropy of P. As the third term in Eq.(4) is independent of

P, it is sufficient to consider minimization of the rest of the

terms called the free energy:

F[P] = 〈E〉P − S [P]. (5)

In short, P that is the closest to Q in the sense of KL diver-

gence can be found by minimizing F[P].

2.2. Derivation of a new MF algorithm

The central issue of the variational approach is the choice

of the class of the approximating densities (P’s). The MF

algorithm is derived by choosing the following class of P’s:

P(x) ≡
∏

i

pi(xi). (6)

This means that the variable of each site is independent

of that of any other site. This is in general too restrictive

an assumption to accurately approximate the true density,

whereas it can significantly simplify computation. Substi-

tuting Eq.(6) into Eq.(5), Eq.(5) reduces to

F[P] =
∑

i

∫
pi(xi) fi(xi)dxi

+
∑

(i, j)∈E

�
pi(xi)p j(x j) fi j(xi, x j)dxidx j

+
∑

i

∫
pi(xi) ln pi(xi)dxi, (7)

where E indicates the set of edges in the graph. Note that

the first and second terms correspond to 〈E〉P and the third

term to S [P] of Eq.(5), respectively.

We wish to find P that minimizes Eq.(7) under the con-

straint of
∫

pi(xi)dxi = 1 (i = 1, ...,N). By introducing a La-

grange multiplier for this constraint and solving the Euler-

Lagrange equation, we have the following fixed point equa-

tion for the unknown pi(xi) (i = 1, . . . ,N):

pi(xi) ∝ exp

⎡⎢⎢⎢⎢⎢⎢⎣−
⎛⎜⎜⎜⎜⎜⎜⎝ fi(xi) +

∑
j∈Ni

∫
fi j(xi, x j)p j(x j)dxi

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ , (8)

where Ni is the neighboring site of i-th site. The MF algo-

rithm iteratively updates the estimate of p′i s by using this

equation; the substitution of the current estimates to the

right hand side gives an updated estimate on the left hand

side. The densities p′i s after convergence directly give the

estimates of the marginal densities of Q.

The above derivation is valid for both cases of continu-

ous and discrete variables, and from here, different formu-

lations are necessary for the two cases.

When xi is a discrete variable, pi(xi) is naturally a dis-

crete density. Letting [x1, . . . , xS ] be the discrete values that

xi can take, we denote their probabilities by [p1
i , . . . , p

S
i ].

Then, Eq.(7) reduces to

F[p] =
∑

i

∑
s

ps
i fi(xs)

+
∑

(i, j)∈E

∑
s,t

ps
i pt

j fi j(xs, xt) +
∑

i

∑
s

ps
i ln ps

i . (9)

The fixed point equation (8) is such that Eq.(7) is minimized

under the constraint
∫

pi(xi)dxi = 1. In the discrete case,

the constraint becomes
∑

s ps
i = 1 (for any i); under this

constraint, Eq.(8) turns to

ps
i ∝ exp

⎡⎢⎢⎢⎢⎢⎢⎣−
⎛⎜⎜⎜⎜⎜⎜⎝ fi(xs) +

∑
j∈Ni

S∑
t=1

fi j(xs, xt)pt
j

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ , (10)

which gives the updating rule for the probabilities

[p1
i , . . . , p

S
i ] (i = 1, . . . ,N).

When xi is a continuous variable, we are to represent

pi(xi) by some parametric function such as a Gaussian dis-

tribution; Eq.(8) will then give an updating equation for

the parameters. Note however that this is possible only for

parametric functions such that the right hand side of Eq.(8)

yields the same parametric function.

Now we present our formulation for discretizing a con-

tinuous problem. We wish to make feasible the computation

for a problem originally defined in the continuous domain

by discretizing the variable space. To do this, sticking to

the above continuous formulation, we represent pi(xi) by a

mixture of S i rectangular densities as

pi(xi) ≡
S i∑

s=1

αs
i hs

i (xi) i = 1, . . . ,N (11)

where αs
i is the mixing coefficient to be determined in the

minimization; hs
i is a rectangular function fixed during the

minimization, which is defined as follows. Let X be the

variable space and d be its dimensionality. Also let Xs
i be

a d-dimensional hyperrectangle (i.e., the Cartesian product

of intervals) such that Xs
i
⋂Xt

i = ∅. Then, hs
i (xi) is defined

to be

hs
i (xi) =

⎧⎪⎪⎨⎪⎪⎩
1/Vs

i if x ∈ Xs
i

0 otherwise,
(12)



whereVs
i is the volume of Xs

i ; thus
∫

hs
i (xi)dxi = 1.

Note that the rectangular functions hs
i (xi)’s may have

non-uniform locations and sizes. Thus, one may dis-

tribute h1
i (xi), . . . , h

S i
i (xi) in the variable spaceX densely (or

sparsely) for particular portions ofX depending on their im-

portance. Note also that their distribution in X is allowed to

be different for each site, so is even S i. Thus, one may, for

example, increase or decrease S i for particular sites (e.g., an

image region) depending on their importance.

Next we derive the updating equation for αs
i ’s similar to

Eq.(8). Unlike the earlier cases, it cannot be obtained by di-

rectly substituting Eq.(11) into Eq.(8), because of the above

generality of our mixtures. (The right hand side of Eq.(8)

cannot generally be represented by the mixture of the (i-th)

site.

Thus, we trace back to the free energy of Eq.(7). By sub-

stituting Eq.(11) into Eq.(7) and introducing new notations,

it reduces to

F[α] =
∑

i

∑
s

αs
i ( f s

i − Bs
i )

+
∑

(i, j)∈E

∑
s,t

αs
iα

t
j f st

i j +
∑

i

∑
s

αs
i lnαs

i , (13)

where f s
i and f st

i j are respectively defined by

f s
i =

∫
fi(xi)hs

i (xi)dxi, (14)

f st
i j =

�
fi j(xi, x j)hs

i (xi)ht
j(x j)dxidx j, (15)

which are the expectations of the data term and the smooth-

ness term with respect to hs
i (xi) and ht

j(x j); Bs
i is defined

by

Bs
i ≡ −

∫
hs

i (xi) ln hs
i (xi)dxi. (16)

An updating equation for αs
i ’s can be directly derived

from the similarity between Eq.(13) and Eq.(9). If we

equate the pairs αs
i ↔ ps

i , ( f s
i − Bs

i ) ↔ fi(xs) (not f s
i ↔

fi(xs)), and f st
i j ↔ fi j(xs, xt), the two free energies coin-

cide with each other. Moreover, we have the same con-

straint for αs
i ’s as the one for ps

i ’s under which Eq.(10) is

derived from Eq.(9). It is
∑

s α
s
i = 1, which is obtained

from
∫

pi(xi)dxi = 1 and
∫

hs
i (xi)dxi = 1. Therefore, the

fixed point equation for Eq.(9) gives the one for αs
i as

αs
i ∝ exp

⎡⎢⎢⎢⎢⎢⎢⎣−
⎛⎜⎜⎜⎜⎜⎜⎝( f s

i − Bs
i ) +
∑
j∈Ni

S j∑
t=1

f st
i j α

t
j

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ . (17)

For this derivation, we need also to assume that S i = S for

any i. However, the same equation can be derived for the

case where S i differs for each i; the details are omitted for

the lack of space.

The updating equation (17) has a similar form to Eq.(10).

Under the natural correspondences αs
i ↔ ps

i , f s
i ↔ fi(xs),

and f st
i j ↔ fi j(xs, xt), the only difference is the presence

of Bs
i . If h1

i (xi), · · · , hS i
i (xi) have the same size in X, then

Bs
i becomes constant for any s. If so, it is invalidated in

Eq.(17) and the above MF algorithm coincides with the con-

ventional one. Therefore, Bs
i can be regarded as a compen-

sating term for the “non-uniformity” of the discretization of

the variable space X.

2.3. Derivation of a new BP algorithm

For Belief Propagation, the following class of approxi-

mating densities P’s is considered.

P(x) =

∏
i j pi j(xi, x j)∏
i pi(xi)zi−1

, (18)

where zi is the number of neighboring sites of the i-th site;

pi(xi) and pi j(xi, x j) satisfy

∫
pi(xi)dxi = 1,

�
pi j(xi, x j)dxidx j = 1,

∫
pi j(xi, x j)dxi = p j(x j). (19)

This density class has more generality than that for MF

(Eq.(6)), and thus the marginal densities estimated by BP

tend to be more accurate than MF.

Similarly to the MF algorithm, substituting Eq.(18) into

Eq.(5), we have

F[P] =
∑

i

∫
pi(xi) fi(xi)dxi

+
∑

(i, j)∈E

�
pi j(xi, x j) fi j(xi, x j)dxidx j

−
∑

i

(zi − 1)

∫
pi(xi) ln pi(xi)dxi

+
∑

(i, j)∈E

�
pi j(xi, x j) ln pi j(xi, x j)dxidx j. (20)

In the conventional discrete formulation, the BP algo-

rithm is derived as follows. We denote the discrete val-

ues that xi takes by [x1, . . . , xS ] and their probabilities by

[p1
i , . . . , p

S
i ] (i.e., ps

i ≡ p(xi = xs)). We also define

pst
i j ≡ pi j(xi = xs, x j = xt)). Rewriting Eq.(20) with the

newly defined variables, we have

F[p] =
∑

i

∑
s

ps
i fi(xs) +

∑
(i, j)∈E

∑
s,t

pst
i j fi j(xs, xt)

−
∑

i

(zi − 1)
∑

s

ps
i ln ps

i +
∑

(i, j)∈E

∑
s,t

pst
i j ln pst

i j, (21)



where p contain all ps
i ’s and pst

i j’s. The constraints on pi(xi)

and pi j(xi, x j) reduce to∑
s

ps
i = 1,

∑
s,t

pst
i j = 1,

∑
s

pst
i j = pt

j. (22)

By minimizing F[p] under these constraints , we have the

discrete BP algorithm that iteratively updates the messages

mt
i j according to

mt
i j ←

∑
s

φs
iψ

st
i j

∏
k∈Ni\ j

ms
ki, (23a)

where

φs
i = exp

[− fi(xs)
]
, (23b)

ψst
i j = exp

[
− fi j(xs, xt)

]
. (23c)

In our formulation, we use the same mixture of rectan-

gular densities for representing pi(xi) and pi j(xi, x j). To be

specific, we represent pi(xi) and pi j(xi, x j) as

pi(xi) =

S i∑
s=1

αs
i hs

i (xi), (24a)

pi j(xi, x j) =

S i∑
s=1

S j∑
t=1

αst
i jh

s
i (xi)ht

j(x j). (24b)

By substituting these into Eqs.(19), from
∫

hs
i (xi)dxi = 1 we

have ∑
s

αs
i = 1,

∑
s,t

αst
i j = 1,

∑
s

αst
i j = α

t
j. (25)

These coincide with Eqs.(22).

Substituting Eqs.(24) to Eq.(20) and simplifying the re-

sult using Bs
i defined in Eq.(16), Eq.(20) reduces to

F[α] =
∑

i

∑
s

αs
i ( f s

i + (zi − 1)Bs
i )

+
∑

(i, j)∈E

∑
s,t

αst
i j( f st

i j − Bs
i − Bt

j)

−
∑

i

(zi − 1)
∑

s

αs
i lnαs

i +
∑

(i, j)∈E

∑
s,t

αst
i j lnαst

i j. (26)

Comparing this with Eq.(21), it is seen that the former

coincides with the latter if we equate the following four

pairs: αs
i ↔ ps

i , αst
i j ↔ pst

i j, f s
i + (zi − 1)Bs

i ↔ fi(xs),

and f st
i j − Bs

i − Bt
j ↔ fi j(xs, xt). Moreover, we have the

same constraints for αs
i and αst

i j as those for ps
i and pst

i j
given in Eqs.(22), under which the message updating rule

of Eqs.(23) are derived from Eq.(21). Therefore, by per-

forming the above four substitution on Eqs.(23) , we have

the new message updating rule for our formulation, which

is given by (the same as Eq.(23a))

mt
i j ←

∑
s

φs
iψ

st
i j

∏
k∈Ni\ j

ms
ki, (27a)

where φs
i and ψst

i j are differently calculated as

φs
i = exp

[
−( f s

i + (zi − 1)Bs
i )
]
, (27b)

ψst
i j = exp

[
−( f st

i j − Bs
i − Bt

j)
]
. (27c)

From these, the mixture weights are computed as

αs
i ∝ φs

i

∏
k∈Ni

ms
ki. (28)

As mentioned earlier, if h1
i (xi), · · · , hS i

i (xi) have the same

size in X, then Bs
i becomes constant. If so, all the terms as-

sociated with Bs
i are invalidated in the above updating equa-

tions and then the above BP algorithm coincides with the

conventional one. Therefore, similarly to MF, Bs
i can be re-

garded as a compensating factor for the non-uniformity of

the discretization.

3. Dynamic discretization of the variable space
3.1. Usefulness of non-uniform discretization

The new MF and BP algorithms can deal with non-

uniformly discretized variable space. By densely discretiz-

ing important portion of the space and sparsely discretizing

the rest and then using these algorithms, we will be able

to achieve higher balance between computational efficiency

and accuracy of marginal density estimates. When the vari-

able space is of two or higher dimensions, this effect will

be significant; it is particularly so for the BP algorithms,

in which computational cost is mainly determined by the

number of labels. (When the dimensionality of the variable

space is D and the number of labels is L, the computational

cost of BP is proportional to L2D.)

The next question is how to obtain such an effective dis-

cretization of the variable space. If we have a prior knowl-

edge about where is more important in the variable space, it

will be possible to use it to obtain a good discretization. For

the case where no such knowledge is available, we present

a method for dynamically discretizing the variable space to

have an effective discretization.

3.2. Coarse-to-fine block subdivision

We assume here that behind the estimation of the

marginal density, there is a motivation to accurately know

its shape around its maximum, e.g., to determine the po-

sition of its maximum as accurately as possible. Then,

this will be made possible by more densely discretizing the

space around the maximum of the marginal density.

As it is in general impossible to know the maximum of

the marginal density beforehand, we consider dynamically

dividing the variable space, as shown in Fig.1. We start with

initial coarse discretization of the variable space, that is, the

variable space is divided into a small number of blocks. The



Figure 1. Dynamic discretization of the variable space. Each block

indicates the support of a rectangular density composing the mix-

ture approximating the true marginal density.The block having the

largest weight is divided into subblocks.

rectangular function whose support is each block composes

the mixture density approximating the true marginal den-

sity. For this discretization, the MF or BP algorithm is run

for a certain iterations. Then, for each site (i), identify-

ing the block (s) whose mixture weight αs
i is the largest,

we divide this block into a number of subblocks. (Multiple

blocks with the largest weights may be divided simultane-

ously.) Then, integrating these new blocks with the blocks

that are not divided, we consider a new mixture of rectangu-

lar functions whose supports are given by them. We repeat-

edly perform these three procedures for a desired number

of iterations: updating the mixture weights for the current

discretization by our MF or BP algorithm, identifying the

block(s) with the largest weight(s), and dividing them into

subblocks to obtain a new discretization.

3.3. Dividing a rectangular density

The subdivision of a block means dividing the corre-

sponding rectangular density into multiple rectangular den-

sities, as shown in Fig.1. Thus, the mixture of rectangular

densities after the subdivision has a different representation

from the one before it. Corresponding to this representation

change, we need to update αs
i ’s in MF and mt

i j’s in BP. The

principle of updating these parameters is that the mixtures

before and after the subdivision should be the same den-

sity regardless of their difference in representation. Based

on this principle, these parameters before the subdivision

are processed and transferred to those after the subdivision.

Different procedures are necessary for MF and BP.

The procedure for MF is as follows. Suppose that a

rectangular density is divided into K rectangular densi-

ties of an identical size. Following the above principle,

the mixture weights of the new densities are given by the

weight of the original density divided by K. This en-

sures that the mixtures before and after the subdivision

have the same shape. Suppose, for example, that the s-th

block of the i-th site is divided into two blocks. Denoting

S i pre-division weights by [α1
i , . . . , α

s−1
i , α

s
i , α

s+1
i , . . . , α

S i
i ],

the new weights are of S i + 1 long and is given by

[α1
i , . . . , α

s−1
i , α

s
i /2, α

s
i /2, α

s+1
i , . . . , α

S i
i ].

The procedure for BP is as follows. Suppose that we

want to perform the subdivision at the i-th site. To do this,

we first compute αs
i ’s based on Eq.(28) by using all the

messages passed to this site, i.e., {ms
ki | k ∈ Ni}. Using

these weights, we then perform the block subdivision of the

variable space as described above. In the case of MF, the

mixture weights [α1
i , . . . , α

S i
i ] are manipulated so as to re-

flect the subdivision. We apply the same manipulation to

[m1
ki, . . . ,m

S i
ki ] for each k ∈ Ni.

4. Experimental results
To examine the effectiveness of the proposed methods,

we conducted experiments.

4.1. Effect of non-uniform discretization on
marginal density estimates

To compare the behaviours of the conventional and pro-

posed algorithms when the variable space is non-uniformly

discretized, we consider a simple Gaussian MRF for which

the exact marginal densities can be analytically obtained.

To be specific, we consider a MRF model defined on a 5×5

grid graph that has the following energy:

E(x) =
∑

i

x2
i +
∑

(i, j)∈E
(xi − x j)

2. (29)

Clearly, its marginal densities are Gaussian distributions

having zero mean.

For this MRF model, we divide the variable space in an

asymmetric way with respect to the origin x = 0 of the

space. To be specific, considering only the range of [−2, 2],

we discretize its negative part [−2, 0] into 64 blocks and

the positive one [0, 2] into 16 blocks. Thus, the continuous

MRF is converted into a discrete MRF with 80 labels in

total.

Then we apply the conventional MF and BP algorithms

and the proposed MF and BP algorithms to this discrete

MRF. Figs. 2 and 3 show the results of the MF and BP

algorithms, respectively. They show the estimates of the

marginal density at the site in the upper-left corner of the

5 × 5 grid graph. The estimates by the conventional algo-

rithms are shown by red dots; those by the proposed algo-

rithms are shown by blue histograms; the exact marginal

densities are shown by a continuous red curve. In the con-

ventional algorithms, a marginal density is represented as

a discrete density, i.e., [p1
i , . . . , p

S
i ]. In the plots, to enable

direct comparison with densities in the continuous domain,

its scale (i.e., the heights of the red dots) is appropriately

adjusted. In the proposed algorithms, the marginal densi-

ties are represented as the mixtures of rectangular densities,

which are shown in the plots.

It is seen from Figs.2 and 3 that the estimated marginal

densities by the conventional MF and BP algorithms both
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Figure 2. The results of the conventional and proposed MF algo-

rithms. The red dots indicate the marginal density estimate by the

conventional MF; the blue histogram indicates those by the pro-

posed MF; the continuous red curve indicates the exact marginal

density.
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Figure 3. The results of the conventional and proposed BP algo-

rithms. Legends are the same as Fig.2.

have bias; their means deviate from the true mean (i.e.,

x = 0) toward the side of x < 0. This is because of the

asymmetric discretization; the energy tends to have a lower

value when the marginal density estimates are in the side of

denser discretization. On the other hand, the proposed MF

and BP algorithms both yield more accurate estimates. The

result of MF still has a bias but it is much smaller than the

conventional one. The result of BP is even more accurate.

Although there appears to exist small bias in the variances

of the marginal density estimates, this is a fundamental lim-

itation of these algorithms; even in the case of symmetric

discretization, the MF and BP algorithms cannot estimate

the exact value of the variance.

4.2. Stereo matching

We applied the proposed dynamic discretization method

to stereo matching and examined its effectiveness. To gen-

erate an energy function, we used the Middlebury MRF li-

brary [8]. We set |L| = 128, λ = 2, smoothmax=20, and

truncated = 2. We multiply the values of the data and

smoothness terms given by the library by 1/10, as other-

wise, the marginal densities will have very sharp peaks,

which is not fit for the purpose of this experiment.

The dynamic discretization method is applied to the data

as follows. Initially dividing the variable space into eight

blocks of an identical width, we iterate the following three

steps for eight times: performing the MF or BP algorithm,

identifying the block of the largest weight, and dividing the

block into two blocks. At each of the eight iterations, the

MF or BP update is iterated for 100 times. In the experi-

ment, we set the lower bound of the block size to be 1 for

ease of implementation. Thus, if the block with the largest

weight has reached this lower bound, we divide the one with

the second largest weight. If it has reached the bound, then

we divide the next largest one, and so on.

The above recursive subdivision increases the number

of blocks from initial eight to sixteen (= 8 + 8). Figs.4

and 5 show the initial, intermediate, and final results when

the number of blocks is 8, 10, 12, 14, and 16, for the Aloe
dataset (641×555 pixels). For the sake of comparison, each

figure also shows the result obtained with a fixed, uniform

discretization; it is obtained by our MF or BP algorithm

after 1000 iterations, when the variable space of the range

[0, 128] is divided into 16 blocks.

For both results, it is seen that the mixture density de-

picts the marginal density in a finer way with the increas-

ing number of blocks. Note that the horizontal axes cor-

respond to a portion of the full range [0, 128]. (The block

sizes in the case of eight and sixteen block divisions are

128/8 = 16 and 128/16 = 8, respectively.) As compared

with the mixture densities of the fixed discretization, those

of the dynamic discretization draw much finer details not

only at the same number of blocks (i.e., 16) but even at

the smaller number of blocks. As a result, the maxima of

the marginal densities can be determined much more accu-

rately, and thus the dynamic discretization yields smoother

disparity maps. Clearly, suffering from the insufficient num-

ber of divisions, the disparity maps for the fixed discretiza-

tion are not smooth.

5. Summary

We have described a novel formulation of continuous-

discrete conversion for the inference of marginal densities

based on MRF models. In the formulation, the marginal

densities are estimated in the continuous domain by approx-

imating them with mixtures of rectangular densities. Based

on this formulation, we have derived the MF and BP al-

gorithms, which can correctly deal with the non-uniform

discretizaion of variable space. We have also shown the

method for dynamically discretizing the variable space in

a coarse-to-fine manner in the course of the computation.

This enables to improve the accuracy of marginal density

estimates without sacrificing computational efficiency. We

have shown several experimental results proving the effec-

tiveness of our approach.
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Figure 4. Results of the MF algorithm with the dynamic discretization. Upper row: Disparity maps. Lower row: The marginal density

estimates at the site of the image pixel (100, 100).
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Figure 5. Results of the BP algorithm with the dynamic discretization. Upper row: Disparity maps. Lower row: The marginal density

estimates at the site of the image pixel (100, 100).
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