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Introduction Results
Recent studies on neural frequency-specific activities in primate visual cortex 1. Theta and beta-gamma band activities were better predicted from 2. Theta and beta-gamma band activities were better predicted from
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2. Do different frequency bands contain band-spec?lflc visual featur.es? Frequency (Hz) Frequency (Hz)
3. HO(\th_are :;hese band-specific neural representations distributed in space - Prediction accuracy of each frequency (with the best layer and time window of each
and time: eIectrodg) | Visualizations of assigned CNN layers for theta (blue) and beta-gamma (red) activities
Blue points: electrodes greater than the chance level (p < 0.001, permutation tgst), (PCC at the best time window of all electrodes)
Materials and Methods b:acr p(;)mts: electrodes less than or equal to the chance level, red points: median over . Vertical lines: median layer of each band’s results
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Image set
6 object categories (building, body part, face, insect, fruit, tool) 3. Category-specific selectivity of theta band models 4. Theta and beta-gamma models were distributed in several
600 natural images for each category spatiotemporal clusters
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| Spatially and temporally overlapping clusters of theta and
s beta-gamma bands have different selectivity (cluster 2 of
E theta versus cluster 1 of beta-gamma).
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Measuring ECoG activities on macaque inferior temporal cortex (ITC) g .
2 female macaque monkeys i cluster 1 cluster 2 Dorsal 01200 me
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Encoding ECoG activities from hierarchical representations of CNNs Q2 B_eta gamma band models show_e d seleqtlwty with low-level £
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electrode, time window, Image L U * Theta and beta-gamma band activities are more related to visual features than
frequency, and CNN Iayer. v | other bands. 201-300 ms I 301-400 ms
We first trained each encoding 3 - Theta band activities are related to higher- and category-level visual features - a
model by ridge regression, 3 i (object category, shape), while beta-gamma band activities to lower-level = ) .
and then evaluated each Ll i . . .
model’s prediction accuracy Input Channel visual features (color, low/high spatial frequency) rot-500 e o100 e
with test set. - Theta and beta-gamma band activities have several spatiotemporal clusters - « ®
Prediction accuracy was Feature gxtraction that show different selectivity. £ | ~ . -
calculated as the Pearson’s pretrained CNN model (VGG-VD-16) O m n w ' ] -
correlation coefficient (PCC) 3 8 S 8 8 8 8 3 8 8 318 8 References
- R - R o R B | - R ) 0 30 3 —h —h —=h
between observed and b N K S o o NS 515 & S 4 & [1] Michalareas, G., Vezoli, J., Van Pelt, S., Schoffelen, J. M., Kennedy, H., & Fries, P. (2016). Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron, 89(2), 384-397.
N N W w W ~ b~ b o1 O O
predicted ECoG activities. LS s s e Lo e T o o [2] Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition. ICLR 2015, 1-14.

Acknowledgements (grant): KAKENHI (15H05919) and CREST, JST



